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Abstract

At low temperatures, electrons in semiconductors can be phase coherent over distances

exceeding tens of microns and are sufficiently monochromatic that a variety of interesting

quantum interference phenomena can be observed and manipulated.

This work discusses electron transport measurements through cavities (quantum dots)

formed by laterally confining electrons in the two-dimensional sub-band of a GaAs/AlGaAs

heterojunction. Metal gates fabricated using e-beam lithography enable fine control of the

cavity shape as well as the leads which connect the dot cavity to source and drain reservoirs.

Quantum dots can be modeled by treating the devices as chaotic scatterers. Predictions

of this theoretical description are found to be in good quantitative agreement with exper-

imental measurements of full conductance distributions at different temperatures. Weak

localization, the suppression of conductance due to phase-coherent backscattering at zero

magnetic field, is used to measure dephasing times in the system. Mechanisms responsi-

ble for dephasing, including electron-electron scattering and Nyquist phase relaxation, are

investigated by studying the loss of phase coherence as a function of temperature.

Coupling of external microwave fields to the device is also studied to shed light on the

unexpected saturation of dephasing that is observed below an electron temperature of 100

mK. The effect of external fields in the present experiment is explained in terms of Joule

heating from an ac bias.
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Chapter 1

Introduction

1.1 Introduction

Until recently, designers of man-made electronic devices have required little understanding of

the basic laws of quantum mechanics. Clearly the electronic band structure of a conductor

or semiconductor is dictated by quantum mechanics in the same way as chemical bond

structure. However, the properties of electron flow can usually be abstracted using a fluid-

like model requiring only a knowledge of bulk properties and the dimensions of the container.

This picture has been radically modified with the advent of new artificial systems in

which the phase coherence, as well as the quantization of an electron’s motion and charge,

are very important, and can even completely determine electronic transport. The new field

that encompasses much of this work has been coined “mesoscopic” physics. A universal

feature of mesoscopic systems is that the coherence length can be larger than one or more

dimensions of the device (container) under study. With the help of sub-Kelvin cryogenic

measurement equipment, electronic coherence lengths of over 100 microns can be observed,

well within the range of today’s nanometer-scale fabrication techniques. In addition, low-

density semiconducting systems can have conduction electrons with very large electronic

wavelengths up to ∼60 nm, approximately 200 times the atomic scale. With electron beam

lithography, one can pattern arbitrary shapes near the scale of one wavelength.

From a physics perspective, mesoscopic systems give insight into fundamental issues

relating to quantum mechanical systems. Recent developments in quantum computing have

highlighted the importance of increasing our understanding of decoherence and quantum

interactions in general. Our present study of dephasing in quantum dots is significant in that

1



2 CHAPTER 1. INTRODUCTION

GaAs/ Au film
AlxGa1−xAs 20 nm thick units

Effective mass me 0.067 1.1 me = 9.1 10−28g
Density of states ρ(E) 0.28× 1011 8 cm−2meV−1

Areal density (typ.) n 2× 1011 ∼ 1013 cm−2

Fermi velocity vF 1.9 14 107cm/s
Mobility µe 106 20 cm2/Vs
Elastic scattering time τe 40 0.013 pS
Diffusion constant D 7000 135 cm2/s
Fermi wavelength λF 60 0.5 nm
Mean free path le 7 0.02 µm
Cyclotron radius lcycl 70 – nm(B/T)−1

Thermal length (100 mK) lth 16 – µm

Table 1.1: Typical electronic properties of GaAs/AlxGa1−xAs based 2DEG and Au film (30 nm)
systems.

a rich set of interactions becomes accessible. Studying coherence limits in flexible mesoscopic

systems will likely result in knowledge of broad interest. The completely artificial nature of

quantum dots and related devices sets them apart from much more perfect, but ultimately

unmodifiable, atomic and molecular “systems”.

Two of the most popular mesoscopic systems are (1) thin metal films, specifically Au

films, widely used because they are convenient to fabricate, and (2) the two-dimensional

electron gas (2DEG) formed at the hetero-interface between GaAs and AlxGa1−xAs. The

GaAs/AlGaAs hetero-interface can be grown with few if any crystal defects, resulting in

fantastically large mean free paths in the 10’s of microns. Many other mesoscopic sys-

tems have also been studied. For example, Klaus von Klitzing and coworkers discovered

the quantum Hall effect in a silicon MOS structure before the widespread availability of

GaAs/AlxGa1−xAs material. 2DEGs based on InAs/AlSb have been used to study hybrid

supeconductor-2DEG systems, in which the macroscopic superconductor phase can couple

to the normal electron phase, and coherent backscattering “Andreev reflection” can occur.

Table 1.1 briefly summarizes typical physical parameters for transport electrons in

GaAs/AlxGa1−xAs-based 2DEGs and in a typical Au film with a thickness of 20 nm

[Echternach93]. The values for the GaAs/AlxGa1−xAs 2DEG are typical of those used

in the experiments described in this thesis.
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1.2 The GaAs/AlxGa1−xAs System and Depletion Gating

Devices fabricated from semiconductor 2DEGs enable the direct manipulation and control

of electron wave functions. This is due to both the large electronic wavelength, and more

importantly, to a MOSFET-like structure in which metal gates situated directly above the

2DEG are able to deplete it. Figure 1.1 shows a side view of the heterostructure, with both

contacts to the 2DEG and a depletion gate. Since the 2DEG is typically 50 to 200 nm below

the surface of the crystal (and the gates), there is a lateral resolution limit on the ability to

control and pattern the electron gas. In practice one can control the wavefunction only to

within a few wavelengths in a completely arbitrary way.

I (pA)

CONTACT CONTACTGATE

GaAs

2DEG

2DEG

Figure 1.1: Side and perspective view of gated quantum dot structure.

A perspective dot formed using depletion gates is shown in the bottom of Figure 1.1. The

2DEG lies just under the surface. Two openings allow current to pass through the device.

Measuring the conductance through the device is the fundamental means by which it is

probed. In different regimes of operation, one can resolve information about energy, wave

function intensity, and aggregate trajectory interference with conductance measurements.

Figure 1.2 shows the band structure which supports the 2D electron gas. Starting at

the wafer surface, the GaAs cap passivates the surface from oxidation, the n-doped region

provides carriers to occupy the quantum well, and the AlGaAs spacer keeps the donor sites

away from the well, enhancing mobility. The 2DEG itself is defined by the quantum well

formed at the interface of the AlGaAs and the bulk GaAs. A superlattice is usually added
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to isolate the structure from the substrate (not shown).

n-doped AlGaAs

GaAs
AlGaAs

spacer

(undoped)

+
+

+
+

+
+

+ + + + +

Location of 2D

electron gas

Surface of wafer

GaAs

cap Fermi Energy

Figure 1.2: Band diagram of a GaAs/AlGaAs heterostructure created to support a high-mobility
two-dimensional electron gas.

The 2D electron system created at this interface is very useful experimentally because,

in addition to the large electron wavelength, GaAs and AlGaAs are almost perfectly lattice

matched. As a result if the crystal is grown carefully, there are few of the normal interfacial

defects due to lattice mismatch, and the mean free path (the average distance an electron

wave can travel with suffering a collision) can be over 100 microns, limited only by the

presence of nearby dopants (donor impurities). It is convenient that AlxGa1−xAs has a

simple band structure for mixture ratio x < 0.4, with a circular Fermi surface. Thus, the

quasiparticles in the 2DEG behave like electrons, with only an effective mass substitution.

1.3 Quantum Interferometry

Electron behavior at atomic scales is governed by the Schödinger equation, a complex-valued

scalar wave equation. For an ideal 2D electron gas without interactions, the equation is

separable (the z wavefunction is the quantum well ground state), and valid solutions for in-

dividual electrons are planewaves. Under typical measurement conditions, the Fermi energy

is ∼ 7 eV and kT for 100 mK is ∼ 8.6 µeV, so the planewaves are nearly monochromatic.

A dot similar to those measured in this thesis is shown in Figure 1.3 with a simulated



1.3. QUANTUM INTERFEROMETRY 5

wavefunction [Akis97]. If the dot is sufficiently ‘open’ such that the leads each support

one or more transverse electron modes, a trajectory picture is valid, and one can visualize

different trajectories from a (partly diffractive) entrance lead combining at the exit to create

fluctuations in transmittance T (bottom Figure 1.3). If any parameter that affects the

accumulated phase of the trajectories is altered, such as the electronic wavelength (directly

related to energy), the interference pattern changes. If some of the waves contributing to

the interference lose their coherence, or have a distribution of energies (such as for non-zero

temperature), there will only be partial interference.

Ψ(x,y )

Chaotic Interferometer:

Simulation by R. Akis,
PRL 79 , 123 (1997)

1

R

1

0

T

Fermi wavelength or other parameter

No Dephasing

Dephasing or
Thermal Smearing
Present

T

Figure 1.3: A two dimensional chaotic interferometer and simulated transmission fluctuations.

The cavity in Figure 1.3 is the classic stadium-shaped billiard, whose classical dynam-

ics are chaotic. Other types of interferometers are shown in Figure 1.4. Structures with

“regular” classical dynamics such as a two-arm interferometer or integrable cavity can be

constructed. However due to the limitations of present technology they are imperfect and

lead to a mixed phase-space (partly chaotic and partly regular). This is understood by

thinking of the 2DEG as an electron sea. Away from the walls, the ocean surface is smooth

– most bottom roughness is screened, creating long mean free paths. At the shoreline, how-

ever, the rocky bottom is exposed. Any wave reflecting off of the edge of the device is likely

to suffer non-specular scattering due to border irregularities. Thus cavities made using
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GaAs/AlGaAs 2DEG technology can never be perfectly regular. In contrast, the chaoticity

of cavities in which chaotic trajectories are dominant is unaffected by perturbations, since

the trajectories traverse phase space evenly. Therefore if one fabricates a chaotic cavity, one

gets a chaotic cavity. Fortunately, the present understanding of the statistical behavior of

chaotic structures has good theoretical support, which makes these structures appealing.

In a device open to a set of reservoirs, charging interactions are observed to have min-

imal effect on the structure of transport, and can be parameterized with a dephasing rate.

Phenomena exhibited by closed structures however, such as Coulomb blockade peak spac-

ing distributions, appear to be fundamentally altered by interactions [Sivan96, Simmel97,

Patel98a].

Two-arm   Regular/Integrable

Chaotic

Figure 1.4: Different types of interferometers.

Some experimental data from a GaAs/AlGaAs quantum dot is shown in Figure 1.5

where conductance fluctuations (g) are shown as a function of perpendicular magnetic field,

and as a function of the voltage applied to a side gate. The field modifies the phase of looped
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paths due to the Aharonov-Bohm phase, and the gate voltage affects the length, and thus

the accumulated phase, of paths reflected from this gate. In Figure 1.5 the dot area is

about 2 µm2, and the Fermi wavelength is 60 nm. If there were no dephasing or thermal

(energy) smearing of the electrons in the device, the conductance should oscillate between

0 and 2 e2/h, the latter being the conductance of a fully-conducting single mode lead which

connects the device to one of the reservoirs (the leads are single mode in this measurement

and for most of the work in this thesis). Regardless of thermal smearing and dephasing,

however, the average conductance for magnetic field greater that a few flux quanta is not

effected (= 1.0 e2/h). This will be discussed further in the next chapter. This device, like

all of those studied in this thesis, are two-lead devices. Quantum dots with more than two

leads are an interesting possibility for future work, to study dephasing as well as charging

physics.
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Figure 1.5: Measured interference fluctuations as magnetic field (top) and gate voltage (right) are
swept.

A perspective scanning electron micrograph of the device of Figure 1.5 is shown in Figure

1.6. To measure the device, current is driven through the leads labeled I+ and I-, with the

resulting voltage measured with V+ and V-. This gives a very accurate determination of

the conductance through the device. The shape, energy, area and lead connections to the

source and drain are controlled with the six depletion gates that define the device, as seen
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I+

I-

V+

V-

G2

G4

G3

G5
G1

Figure 1.6: Perspective view of a quantum dot as fabricated with blowup of central region.

in the magnified inset. In this device, the 2D electron gas lies 90 nm under the surface. The

device is constructing by etching, and by depositing metal layers. A detailed explanation

of the fabrication procedure is available in Appendix A.

1.4 Quantum Point Contacts

To provide a more exact picture of how the depletion gated structures operate we consider

a fundamental building block for quantum structures which is the quantum point contact

(QPC) – a short 1D quantum wire adiabatically coupled to two reservoirs which supports

one or more wave modes. These modes are quantized in the two dimensions perpendicular

to the direction of propagation. For a small voltage bias each mode carries a quantum of

conductance I = e2/hV . The QPC is analogous to a microwave or optical waveguide.

Figure 1.7 shows a QPC schematic. As the gate voltage VG is made more negative, the

narrow channel between the gates is depleted until only a discrete number of transverse

modes exist in this quantum “wire”. The graph on the right of the Figure shows the

remarkable quantization of the conductance g = I/V , as a function of VG, in unit of 2e2/h.
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Ψ = ΨNM(x,y) e+/-ikz
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Figure 1.7: Schematic drawing of quantum point contact with measured conductance plateaus.

If the biases applied to the two side gates are independently controlled, the conductance

landscape shown in Figure 1.7 results. This type of data were taken for both QPCs on all

measured dots to verify that each QPC was free of significant imperfections. All of the gates

not adjacent to the QPC under test are biased so as to not deplete the underlying 2DEG.

Most QPCs are not as ideal as that of Figure 1.8– an example is shown in Figure 1.9.

The dark streak in Figure 1.9 is likely due to a scatterer. QPCs must be designed so

that they are sufficiently smooth to be adiabatic [Beenakker91a], however not long enough

to be scattered. Nearly ideal (gmax ' e2/h) quantum point contacts are required for the

quantitative measurements we are after, in order to eliminate free parameters. One solution

when presented with a QPC like that in Figure 1.9 is to bias away from the imperfection,

moving the conduction channel away from the defect.

In most experiments in this thesis, dots were biased with single mode leads (labeled

N = 1, where N is the number of modes). In order to create the largest possible relative

quantum fluctuations. It is also more accurate to measure long decoherence times if the

escape rate from the dot is a slow as possible. Some data were taken with a higher number

of modes (N = 2 or higher) to check theory and to make sure that Coulomb charging effects

were not playing a significant role.
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Figure 1.8: Conductance through a quantum point contact. Upper left landscape shows conduc-
tance as a function of the two adjacent gate voltages. Scale and cross sectional plot are shown on the
right. Electron micrograph of device, and gates being swept for conductance landscape are shown
at bottom.

1.5 Features of Quantum Dot Transport

Some introductory insight into phenomena of chaotic quantum transport in quantum dot

devices is illustrated in Figure 1.10. This conductance landscape has as its two axes per-

pendicular magnetic field and gate voltage (the same axes discussed and shown in Figure

1.5). Although here only one gate is being altered, any of the gates may be scanned to

create new sets of landscape.

Many statistical features of the fluctuations can be predicted theoretically, including:

• Amplitude of fluctuations at non-zero magnetic field.

• Amplitude of fluctuations for zero magnetic field.

• Average conductance for zero and non-zero field.

• Full distributions of conductance.
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Figure 1.9: Example of an imperfect quantum point contact. Imperfection may be avoided by
operating away from the defect.

• Power spectra for fluctuations vs. field and vs. voltage (shape/energy)

• All of the above for N = 1, N = 2 . . ., and even for tunnel leads (N ¿ 1).

• All of the above at different temperatures, source-drain bias, and other environmental

conditions.

In most mesoscopic systems, conductance fluctuations are tiny, however in small quantum

dots they can dominate transport.

A very important phenomena should be highlighted here, which is the weak localization

of electrons traversing the dot. In the fluctuations of Figure 1.10 there is, on average, a lower

conductance at zero perpendicular magnetic field than for non-zero field. Weak localization

occurs when a trajectory that enters the dot and then exits back out of the entrance (see Fig-

ure 1.11a) interferes constructively with its time-reversed twin thus reducing conductance

through the device. Trajectories going through the device (entering and exiting through

different leads) have no such twins. When time-reversal symmetry is broken by a perpen-

dicular magnetic field, the twin-paired paths accumulate different Aharonov-Bohm phase

and no longer interfere constructively. In the absence of dephasing, the weak localization

effect reduces the conductance through the device between 1/3 e2/h and 1/2 e2/h – a large

effect. Usually, dephasing phenomena destroy the phase coherence of the longest paths,
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Figure 1.10: Conductance landscape for changing perpendicular magnetic field and gate voltage.

thus reducing the weak localization amplitude. This reduction will be used as the principle

metric to measure dephasing in the experiments described in Chapters 3 and 5. The effect

of raising the temperature and therefore the dephasing rate, resulting in the suppression

of weak localization can be seen in Figure 1.11b which plots the average conductance vs.

magnetic field for 400 mK and 1K for a 4 µm2 device. The curves in Figure 1.11b are

created by averaging many different magneto-conductance traces as shown in Figure 1.11c.

To sum up, even though analysis of the response of chaotic quantum dots must often

rely on average or statistical quantities, these devices enjoy excellent theoretical support

(as will be described in Chapter 2) and unparalleled control in a quantum system. All of

this combined with the rich array of interaction physics observed makes them a compelling

object of study.

For a general introduction to mesoscopic physics concepts, including weak localization,

the reader is advised to consult works including refs. [Beenakker91a, Mesoscopic95, Imry97,

Ferry97]
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Multiple conductance traces average to leave only weak localization response.

1.6 Organization of This Dissertation

This chapter has introduced semiconductor quantum dots as a research topic, and has de-

scribed building blocks, including basic device construction and the quantum point contact,

as well as basic mesoscopic phenomena. These topics will be expanded in the bulk of this

dissertation which is organized as follows:

Chapter 2 summarizes, and derives in many places, theory relevant to electron transport

measurements in quantum dots, including the effects of temperature and dephasing. Results

from transport measurements illustrate the theory.

Chapter 3 describes measurements of the loss of phase coherence (dephasing) in quantum

dots, which is studied principally by measuring the weak localization amplitude in many

devices over a large parameter space.

Chapter 4 describes several specific decoherence mechanisms. Decoherence is usually
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treated as a process described by a dephasing rate; this rate is used as a parameter in the

transport theories developed in Chapter 2 to compare to experimental results.

Chapter 5 discusses experiments in which external electromagnetic radiation is delib-

erately applied to the quantum dots during measurement. This is an important area of

investigation because low temperature decoherence is thought to be dominated by electronic-

noise-based external or internal (Nyquist) dephasing mechanisms.

Finally, Chapter 6, ties together the results of this research in the context of other exper-

iments, reiterates the conclusions of this work and suggests future avenues of investigation.

Several appendixes provide supplementary information as follows:

Appendix A gives fabrication details, mainly processes that I have developed or im-

proved, and which are in use by our lab.

Appendix B provides detailed information about the specific devices and 2DEGs used

in these experiments.

Appendix C describes a cryogenic filter unit that I devised and implemented with an

undergraduate researcher. This filter has allowed our group to reach electronic temperatures

much lower than previously possible.

Appendix D describes the measurement setups, with brief coverage of the standard

cryogenic systems used, and a description of the measurement electronics.

Appendix E gives source code and documentation for a simulation of non-linear Coulomb

blockaded quantum dots, in the presence of a thermal electron gas and ac source drain

fluctuations.

Despite the frequent use of ‘we’ throughout this thesis, I did the majority of the ex-

perimental and analysis effort on all of the experiments described in this dissertation, with

the exception of the He-3 system dephasing measurements done in collaboration with Mike

Switkes, and many of the radiation experiments, where substantial help was received from

Joshua Folk.



Chapter 2

Basic Q-Dot Transport: Theory

and Experiment

2.1 Quantum Dot Transport Overview

The behavior of any quantum dot is in principle fully described by Schrödinger’s equation.

But just as Turing’s machine has led to all sorts of fascinations, the simple laws of quan-

tum mechanics give rise to many bizarre and interesting phenomena in condensed matter

systems, including superconductivity and composite Fermions.

Quantum dots allow one to gain access to several interesting quantum phenomena.

By measuring their conductance, one has a “direct” probe that is not available in other

systems. Most real life quantum dots are somewhat imperfect due to disorder (perhaps

the only exception to date are the very small vertical quantum dots fabricated at NTT

[Tarucha96]). However, the imperfections are exploited, rather than lamented, through the

use of a series of statistical metrics to interpret measurements, as we will see in the following

sections.

2.2 Quantum Dot Structure

The basic structure of the quantum dots measured in this series of experiments was described

in chapter 1: a 2D cavity is connected by two point contacts to source and drain reservoirs.

Transport within the cavity is ballistic, as the number of scatterers is low or zero inside the

cavity.

15
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2.2.1 Quantum Point Contacts

Conductance quantization in a point contact was first observed by Van Wees [vanWees88],

followed closely by Wharam and coworkers [Wharam88]. As discussed in section 1.4, each

step in conductance is associated with the addition of a transverse mode (i.e. 1D sub-band)

to this 1D electron waveguide. For a hardwalled QPC the number of transverse modes

supported is given by Int[kFWπ ]. The conductance is perfectly quantized because the 1D

density of states is proportional to E−1/2, whereas the Fermi velocity vF = h̄k ∝ E1/2.

Thus independent of wave energy, the same current is carried by any waveguide mode and

is proportional to the bias voltage. The fundamental quantum of conductance is e2/h, and

each fully transmitting QPC carries a conductance of N × 2× e2/h where N is the number

of modes and the 2 accounts for spin degeneracy. In SI units, h/e2 = 25.813 kΩ.

As the energy of the electrons increases, additional modes (sub-bands) are accessed.

Ideally, at zero temperature, these are added in an abrupt step-like manner. However, at

finite temperature the transport electrons occupy a range of energies described by the Fermi

function. Tails of the Fermi function at finite T always extend into higher or lower modes

(or are cut off). This causes for the gradual transition between conductance plateaus seen

in Figure 1.7. In addition the finite measurement bias results in a small energy spread,

although this is normally kept below kT. In the QPC’s studied here, the quantum point

contacts are well quantized up to ∼1K.

In an “open” device with QPCs carrying one or more modes, the QPCs act as “mixers”

for the various trajectories through the device. In a “closed” device, the QPCs are biased

to allow only tunneling conductance (g ¿ e2/h, N ¿ 1), significantly isolated the dot from

the reservoirs. Closed QPCs serve to sample the wavefunction at two points on the dot

boundary.

2.2.2 Reservoirs

The reservoirs in these experiments are mostly thermalized Fermi seas, with a known initial

energy distribution of electrons. In any interference experiment many trajectories through

the dot do not decohere significantly, and the waves add up in a quantum mechanical

(complex phasor) manner. It is in the the reservoirs that there is full decoherence, and we

“measure” whether or not the electron has gone through the device, giving us a macroscopic

current for an applied voltage.
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Area A 2.0 µm2

Charge density ρ 2.0× 1011 e/cm2

Number of electrons 4000 ∝ A, ρ
Fermi wavelength λF 60 nm ∝ 1/

√
ρ

∆λF at 100 mK 0.3 nm
Fermi energy EF 7 meV ∝ ρ
∆EF = kT at 100 mK 8.6 µeV
Fermi velocity vF 200 µm/ns ∝ √ρ
Dwell time, two N = 1 leads τdwell = h/2∆ 0.6 ns ∝ A
Coherence time τϕ up to 3 ns
Crossing time τcross =

√
A/vF 7 ps ∝

√
A

No. of wall bounces before escape τdwell/τcross 85 ∝
√
A

Level spacing ∆ = 2πh̄2

m∗A 3.5 µeV ∝ 1/A

Table 2.1: Quantum dot characteristic scales

In non-equilibrium situations (see Sec. 3.3), thermalization can occur both inside the

device and in the reservoirs. For small devices with short escape times, most “hot” electrons

(electrons with excess energy) entering the dot from the source reservoir will keep their

energy through the dot and dissipate it in the drain reservoir.

2.2.3 Quantum Dot Characteristic Scales

Several different scales and energies for a typical quantum device are important to keep in

mind during the rest of the chapter. Typical parameters are listed in the following table:

The level spacing ∆ is the mean separation between energy levels for a closed (isolated)

dot. The dwell time is given for an open device with one mode, N = 1, in each QPC

lead. For a 2.0 µm2 device one sees that the coherence time can far exceed the dwell time,

and also that a large number of wall reflections (∼85) occur before escape, leading to a

well-mixed phase space.

2.3 Semi-Classical Transport

One definition of the transition from classical to quantum behavior is when the action of

the system S =
∫

(~p+ e ~A) · d~q is comparable to h̄ (~p and ~A are the momentum and vector

potential operators). Using path formalism [Feynman65], the Schrödinger equation may be
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recast in terms of a propagator:

Ψ(y, t) =
∫
eiS/h̄ Ψ(x, 0)

The integral is taken over all possible paths from (x, 0) to (y, t). If the action is much larger

than h̄, only a small tube of paths around the classical trajectory will contribution and one

obtains the semi-classical limit, part of the beauty of the approach.

Practically, it is very difficult to sum the paths, and one can obtain a “semi-classical”

approximation for the behavior of a quantum system by calculating propagators over all

the classical paths weighted correctly. Several useful predictions result from semi-classical

analysis of quantum transport for chaotic cavities [Jalabert90, Baranger93a, Baranger93b].

Of relevance for this work, the weak localization lineshape in the conductance is predicted

to be Lorenztian:

〈g〉 = g0 −
δg

1 + (2B/αφ0)2
(2.1)

where α is inverse of the characteristic area swept out by trajectories in the dot, and

φ0 = 4.14 mT µm2 is the flux quantum. This is closely followed by experiment as was

shown in Figure 1.11.

The distribution of swept lengths, times and areas before escape are exponential [Marcus95]:

P (L) ∝ e−L/Lc L ≥ 0

P (t) ∝ e−γt t ≥ 0

P (A) ∝ e−2πα|A|

For the above distribution of P (A) it can be derived that the autocorrelation function of

conductance fluctuations with respect to magnetic field is Lorentzian-squared [Jalabert90],

leading to the power spectrum:

S(f) = S(0)[1 + 2παφ0f ]e−2παφ0f (2.2)

The above results apply to dots with paths which are well-mixed/chaotic, and are suit-

able for the devices studied here. Conversely, for an integrable cavity (e.g. a perfect square
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or circle) the above distributions are typically power laws, and the weak localization line-

shape becomes more triangular. This has been observed experimentally [Chang94].

In the case of chaotic scattering, the direction (momentum) and phase of waves inside

the cavity quickly become mixed, on a time scale that is short compared to the escape time.

This will not fully hold if short paths (i.e. escape before mix) contribute significantly to

transport. We design our dots to avoid straight-through or single reflection trajectories.

Such trajectories have been investigated numerically [Akis97] who observes diamond trajec-

tories and experimentally in triangular billards with very open (N À 1) leads [Linke97b].

The true nature of “quantum chaos” is still an open problem. Chaos in quantum systems

is not truly chaos in the strict sense of classical chaos (i.e. extreme sensitivity to initial

conditions), since the coherence and escape rates limit the maximum possible paths lengths

and thus system sensitivity. Lower size limits (the Fermi wavelength and ∆) means there

can be no infinitely fine conductance structure, however the time response of the system

can in theory be infinite.

2.4 The Scattering Matrix and Landauer Formalism

Many mesoscopic quantum devices, including quantum dots with waveguide leads support-

ing one or more modes, may be modeled by a scattering matrix S:

wout = Swin (2.3)

where win and wout are complex coefficients giving the amplitude and phase of the incoming

and outgoing waves. For a discussion of the S matrix based on Schrödinger’s equation see

[Datta95] (p. 124). S must be unitary in order for current conservation to exist:

|wout|2 = |Swin|2 = w†inS
†Swin = |win|2 (2.4)

The above equation holds only if S† = S−1 which requires S†S = I.

If there are two leads each supporting N modes, then

S =

(
r t′

t r′

)
(2.5)

and t(t′) and r(r′) are N ×N transmission and reflection matrices for waves incident from
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the first (second) lead. The conductance from the first lead through to the second lead (or

vice versa) is given by the Landauer formula:

g = 2g0

N∑
n,m=1

tmn = 2g0Tr(tt†) = 2g0

N∑
n=1

Tn (2.6)

where g0 = e2/h. The 2 accounts for the spin degeneracy that exists in the absence of spin-

orbit scattering. Tn are the transmission eigenvalues of transmission matrix tt† which are

also the eigenvalues of matrices t′t′†, I−rr†, and I−r′r′† [Beenakker97]. The above applies

generally; in the presence of time-reversal symmetry (B = 0), S must also be symmetric

S = ST [Datta95].

2.5 Random S Matrices

The transport properties of quantum dots are well predicted using Random Matrix Theory

(RMT). There is an excellent review of RMT by Beenakker [Beenakker97] and the research

articles by Brouwer and Baranger are very accessible to the generalist so I will give only

minimal background and results here.

Random matrix theory is motivated by the idea that a quantum dot with certain er-

godic properties (i.e. trajectories of partial waves travelling through the dot cavity quickly

explore complete phase space and no specific trajectories are preferentially favored) can be

described statistically by drawing S from a random ensemble of S matrices obeying the

require symmetries.

For two single mode (N = 1) leads, S is a 2 × 2 matrix (Equation 2.5). The average

of the conductance 〈g〉 and conductance variance var(g) can be calculated for the presence

(β = 1) or absense (β = 2) of time reversal symmetry:
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β = 1 β = 2

〈g〉 2
3
e2

h

e2

h

var(g)
16
45

(
e2

h
)2 1

3
(
e2

h
)2

For β = 2, S is drawn from the circular unitary ensemble (the matrix eigenvalues are

uniformly distributed on the unit circle), and for β = 1, S is drawn from the circular or-

thogonal ensemble (the matrices must also be symmetric). For arbitrary N , S is a 2N×2N

scattering matrix, and the generalized conductance and variance results are:

β = 1 β = 2

〈g〉 2N
2N + 1

e2

h
N
e2

h

var(g)
4N(N + 1)2

(2N + 1)2(2N + 3)
N2

4N2 − 1

2.5.1 Justification for RMT

One would think that a theory with a simple premise would have a simple justification, but

this is not true. There are two approaches to justifying RMT based on (1) successful com-

parison to results from numerical techniques and (2) microscopic derivation relating the S

matrix to random Hamiltonians. For more information see [Beenakker97] and [Brouwer97e].

The predictions of RMT are, in identical limits (for example the limit of large N for the

above expression for conductance), in full agreement with the same predictions made using

super-symmetric methods (see Sec. 2.6).

2.5.2 Distributions

In addition to the distribution moments, 〈g〉 and var(g) the full conductance distributions

for two-lead quantum dots have been calculated within RMT [Jalabert94, Baranger94a,
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Beenakker97]. The distributions are universal for any fully chaotic or disordered dot, and

are sensitive only to whether time reversal symmetry is obeyed (β = 1) or broken (β = 2)

(recall that time reversal symmetry can be broken with a perpendicular magnetic field,

|B| >∼ φo/Adot, where Adot is the dot area and φo = h/e is the flux quantum). Interestingly,

RMT yields strongly nongaussian distributions when one or two quantum modes connect

the dot to bulk reservoirs.

For single-mode leads, N = 1, the distribution is P (g) = 1
2(g/2)−1+β/2 [Jalabert94,

Baranger94a], shown in Figure 2.1. The β = 1 distribution is sharply skewed toward

smaller conductance, with average conductance 〈g〉β=1 = 2/3, while the β = 2 distribution

is flat with 〈g〉β=2 = 1. The lower average conductance for β = 1 results from coherent

backscattering, i.e. weak localization, at B = 0.
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1.0

0.5

0.0

P
(g

)
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g (e2/h)

 B=0
 B≠0

Figure 2.1: Theoretical conductance distributions for N = 1, T = 0, and no dephasing.

Experimentally obtained distributions are shown in Figure 2.2. The measured distribu-

tions are significantly more Gaussian-shaped than the ideal distributions from Figure 2.1

(shown as dashed lines). Two effects, dephasing and thermal smearing, wash out fluctua-

tions and cause the conductance to approach e2/h. These effects are discussed in the next

two sections. The experimental technique is described in Sec. 2.5.5.
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Figure 2.2: Conductance probability distributions P (g) for B = 0 (open circles), 40 mT (filled
circles) and 60 mT (filled triangles) for the 0.5 µm2 device at 100 mK, and for B = 0 (open
squares) and 25 mT (filled squares) for the 1.0 µm2 device at 45 mK, along with the theoretical
distributions for kT/∆ = 0.61, γϕ = 0.3 (solid curves) and T = 0, γϕ = 0 (dashed curves).
Theoretical distributions for T = 0, γϕ = 0.3 are shown in Figure 2.6(a). Upper left inset: Pattern
of gates defining each quantum dot. Upper right inset: Conductance through 0.5 µm2 dot as a
function of voltages on shape-distorting gates g1 and g2.

2.5.3 Dephasing and RMT

Dephasing, or the loss of quantum coherence, limits the time over which backscattered

electrons may contribute to interference. To incorporate dephasing into random matrix

theories, a fictitious voltage probe, or “φ-lead”, supporting γϕ modes is appended to the

dot [Buttiker86a]. The number of phase-breaking modes, γϕ, is related to the characteristic

phase coherence time τϕ by:

γϕ =
2πh̄

(τϕ∆)
(2.7)

where

∆ =
2πh̄2

m∗Adot
(2.8)

is the spin-degenerate mean level spacing.

The scattering matrix S is expanded to include the fictitious voltage lead [Baranger95,
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Brouwer95a]. The RMT for this three-lead dot (two real leads plus the φ-lead) then yields

a suppressed weak localization correction [Baranger94b],

δg ' e2

h

N

2N + γϕ
N ≥ 2 (2.9)

that models the effect of dephasing. The accuracy of Equation 2.9 improves as N becomes

larger, and it is a useful expression for N ≥ 2. Note that γϕ is proportional to dot area, so

a larger dot will exhibit a smaller δg for a given τϕ.

The variance of g, including γϕ can be calculated using this technique as

var(g) ' N2

(
√

4N2 − 1 + γϕ)2
N ≥ 2, β = 2 (2.10)

A recent improvement to the voltage-probe model that accounts for the spatially dis-

tributed nature of the dephasing process considers the limit of a voltage lead supporting

an infinite number of modes, each with vanishing transmission, allowing a continuous value

for the dimensionless dephasing rate γϕ [Brouwer97a]. This effectively distributes the phase

breaking throughout the dot rather than concentrating it at the location of a single lead.

The analytic expression for δg in this case is as follows [Brouwer96]:

δg = e2/h (1− 2((−12(eγϕ − 1) + (38eγϕ − 26)γϕ + 4(eγϕ − 7)γϕ2 − 3(eγϕ + 3)γϕ3+

(eγϕ − 1)γϕ4)/eγϕ + γϕ
2(γϕ + 4)(12(eγϕ − 1)− 6(eγϕ + 1)γϕ+

(eγϕ − 1)γϕ2) ExpInt(−γϕ))/24γϕ2) (2.11)

Where the function ExpInt(x) is defined by:

ExpInt(x) =
∫ ∞
x

e−t

t
dt

Fortunately Equation 2.11 can be approximated by:

δg ' e2

h

1
2N + 1 + γϕ

for all N (2.12)

At N = 1 the above approximation for δg(γϕ) agrees with the theoretical expression found

in [Brouwer97a] to within 0.015 e2/h.
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We note here that both the φ-lead model and its distributed extension [Brouwer97a]

ignore the effects of Coulomb charging on δg, which may be important particularly at

N=1 [Furusaki95a, Aleiner96]. The consistency between measured values of using different

methods and dot sizes suggests that any field-dependent charging effects are probably not

corrupting the present measurement significantly. Some recent theoretical results will be

reviewed in Sec. 3.2.2.

The distributions of the conductance fluctuations have also been calculated by Brouwer

using the distributed φ-lead model. N = 1 distributions for γϕ = 1 are shown in Figure

2.3, along with the γϕ = 0 curves. The effect of dephasing is to make P (g) narrower and

roughly gaussian, and to reduce the difference in mean conductance upon breaking time

reversal symmetry, δg = 〈g〉β=2 − 〈g〉β=1.
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Figure 2.3: Theoretical conductance distributions for N = 1, T = 0, and dephasing rate γϕ = 1
and γϕ = 0.

2.5.4 Thermal Smearing

The above results are for zero temperature, i.e. perfectly monochromatic electrons. In most

situations, carriers contributing to transport are spread out in energy according to the

Fermi function f(E). Distributions which include both dephasing thermal smearing effects

are calculated for the first time here.
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The dot cavity, even when open, has a characteristic energy scale of order ∆ – such that

when the energy (and correspondingly the wavelength) is shifted by this scale, the inter-

ference pattern can change. If the carrier energy distribution extends past this resonance

width of the cavity, conductance fluctuations begin to smear out. If the electrons are Fermi

distributed this is known as thermal smearing.

The net conductance is a weighted average of all conductances at all participating en-

ergies. For an energy distribution f(E) the conductance through the device is:

g = −
∫
f ′(E)g(E)dE (2.13)

Since the above equation is linear in g, conductance averages and specifically δg are not

affected by temperature. This fact is precisely why weak localization is particularly useful

for measuring dephasing: δg depends on temperature only through γϕ.

Higher moments and full distributions P (g) depend on temperature both implicitly

through dephasing and explicitly through thermal averaging. The combined effects of de-

phasing and thermal smearing must in general be evaluated numerically, which we do as

follows. Samples of an averaged distribution are generated by summing independent sam-

ples xi
y =

∑
i
wi(T )xi (2.14)

The xi may be drawn from a known distribution P (x, γϕ) [Brouwer97a], and weighted by

the derivative of the Fermi function:

wi = ∆̃f ′([i+ δ]∆̃) (2.15)

f ′(E) =
d

dE
(1 + eE/kT )−1 (2.16)

δ is a binning offset, and ∆̃ is the cavity resonance width, itself dependent on γϕ as described

below. By sampling over ensembles of x values, a distribution P (y) is obtained (the result

is insensitive to the choice of δ for sufficiently large T ). Note that neither fluctuations in

level spacing nor fluctuations in the coupling between the levels and modes in the leads are

included in this simple model.

The distributions for N = 1, kT = 0.6∆, and in the absence of dephasing are shown

in Figure 2.4. The curves are clearly evolving towards a Gaussian. Indeed the well known

Central Limit Theorem states that the averaging of a large number of samples from any
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starting distribution will converge to a Gaussian distribution.
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Figure 2.4: Theoretical conductance distributions for N = 1, kT = 0.6∆, and no dephasing.

As dephasing and thermal averaging conspire to make P (g) nearly gaussian, P (g) can be

characterized by its mean and variance. The mean conductance 〈g〉 (an average quantity)

is not affected by thermal averaging. The variance however is reduced both by dephasing

and thermal smearing. The variance is well approximated by the N = 1 case interpolation

formula:

var(x) =
1

(a+ bγϕ)2
(2.17)

where a =
√

3 (
√

45/16) and b = 1 (
√

1/3) for β = 2 (1) [Baranger95]. By applying

equation 2.14 to the variance we see that

var(y) =
∑

i
w2
i var(x) (2.18)

At temperatures exceeding the level broadening ∆̃ this sum can be well approximated by

an integral,

var(y) = ∆̃
[∫ ∞
−∞

[f ′(ε)]2dε
]
var(x) =

∆̃
6kT

var(x). (2.19)
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The integral form differs from the sum by less than 1% for kT ≥ 0.6∆̃. For experimental

data studied here, this condition is satisfied, and Equation 2.19 is applicable at all measured

temperatures.

To compare the experimental distributions to theory it is necessary to consider the

dephasing rate: P (g) depends on γϕ through its effect on ∆̃. Values for γϕ are measured

from the weak localization correction to the average conductivity, δg = 〈g〉β=2 − 〈g〉β=1

using the results of Ref. [Brouwer97a], as shown in Figure 2.5(b). The values for γϕ(T ) for

this device agree well with other data which will be presented in Chapter 3.
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Figure 2.5: (a) Average conductance 〈g〉 as a function of temperature T for B = 0 and 40 mT for
0.5 µm2 dot. (b) Normalized dephasing rate γϕ and dephasing time τϕ determined from δg(T ) for
the 0.5 µm2 dot. Note agreement with previously measured γϕ(T ) in a 0.4 µm2 dot [Huibers98a].
(c) Variance of conductance for B = 0 and B = 40 mT, corresponding to expected variance for
β = 1 (dashed) and β = 2 (solid) including thermal smearing and dephasing effects (see text). (d)
Variance ratio Var gβ=1/Var gβ=2 as a function of dephasing rate γϕ.
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The re-sampling thermal averaging procedure described above takes energy intervals of

size ∆̃ to be statistically independent. Dephasing however results in level broadening by an

amount proportional to the dephasing rate, which can be taken into account by defining

the level broadening to be:

∆̃ = ∆ (1 + γϕ/2) N = 1 (2.20)

Inserting this definition into Equation 2.19 reproduces a number of previously obtained

results for thermal var(g) in various limits: (γϕ ¿ 1, T À ∆) and (γϕ À 1, T À ∆)

[Efetov95], as will be seen in Sec. 2.6.5. The measured variances of the conductance dis-

tributions for β = 1 and β = 2 as a function of temperature are compared to our thermal

averaging model in Figure 2.5(c). The two are in good overall agreement, however, the ratio

of variances, Var gβ=1/Var gβ=2 show significant disagreement between experiment and the-

ory which remains unexplained. In particular, the experimental ratio is considerably larger

than predicted, as seen in Figure 2.5(d). This ratio is an interesting quantity because, like

δg, it does not suffer thermal averaging within the model considered here. Despite the

disagreement in the ratio of variances, the RMT results for P (g) are generally in very good

agreement with experiment across a broad range of temperatures, as seen in Figure 2.6.

2.5.5 Experimental technique

The measurements presented in Figures 2.2, 2.5, and 2.6 were taken on two lateral quantum

dots with areas 0.5 µm2 (∆ = 14 µeV, device C14 in Appendix B) and 1.0 µm2 (∆ =

7.1 µeV, device C79 in Appendix B). The devices (see Figure 2.2 inset) are defined using

Cr/Au depletion gates 90 nm above a two-dimensional electron gas (2DEG) formed at

a GaAs/Al0.3Ga0.7As heterointerface. Multiple gates on each device allowed independent

control of the two point-contact leads as well as dot shape. Sheet density n = 2×1011 cm−2

and mobility µ = 1.4× 105 cm2/Vs give an elastic mean free path of ∼ 1.0 µm, comparable

to device dimensions, and transport within the dots is roughly ballistic. The dots were

measured in a dilution refrigerator over a range of electron temperatures from 45 mK to

750 mK using 4-wire lock-in techniques at 43 Hz (13 Hz) and less than 7 µV (2 µV)

bias voltage for the 0.5 µm2 (1.0µm2) device. See Appendix D for details. The electron

temperature was determined from a fit to the average Coulomb blockade peak width, as

described in [Folk96].
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Figure 2.6: Measured conductance distributions for B = 0 (open circles) and 40 mT (closed
circles) for 0.5µm2 dot at four temperatures. Curves show theoretical β = 1 (dotted) and β = 2
(dashed) distributions for T = 0 and for measurement temperatures (solid). T = 0 distributions are
determined using the method of Ref. [Brouwer97a]. Thermal distributions are calculated according
to the sampling procedure described in the text.

To date, experimental measurements of significantly nongaussian distributions have not

been reported, first because it is difficult to generate large ensembles of statistically iden-

tical devices, and second because dephasing, which acts roughly as extra modes coupling

the dot to the environment, leads to nearly gaussian distributions [Brouwer97a, Chan95,

McCann97]. To see the nongaussian distributions, dephasing rates and temperatures com-

parable to the quantum level spacing are required. We solve the first problem, of obtaining

large ensembles, by using electrostatic shape distortion of gate-defined quantum dots in a

GaAs/AlGaAs heterostructure [Chan95].

The experimental conductance probability distributions P (g) for |B| ¿ φo/Adot (β =

1) and |B| À φo/Adot (β = 2) shown in Figure 2.2 are histograms containing ∼ 1000

independent samples measured at fixed B for slightly different dot shapes, as controlled by

voltages applied to the gates labeled g1 and g2, as well as the gate between the two point
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contacts. A two-dimensional slice of this 3-D sampling space is shown in the inset of Figure

2.2. In order to precisely maintain single-mode leads throughout the measurement, voltages

on the gates adjacent to the point contacts are slightly trimmed for each shape configuration

after first characterizing the influence of all gates on the point contact conductances. The

asymmetry of the β = 1 distribution is clearly visible in contrast to Ref. [Chan95] which

found gaussian distributions due to thermal averaging and dephasing. Some asymmetry in

the conductance distribution has been observed in Ref. [Lee97] though without quantitative

comparison to theory. The average conductance at β = 2 is ∼ e2/h as expected from RMT,

with a small (4%) deviation at the lowest temperatures possibly due to imperfect quantum

point contacts enhanced by charging effects [Furusaki95a, Aleiner97]. Once time-reversal

symmetry is broken, the distribution becomes insensitive to magnetic field for the relatively

small fields used in the experiment (the cyclotron radius is always larger than the dot size).

For instance, though g(B) are uncorrelated at B = 40 mT and 60 mT, P (g) at these

magnetic field values are nearly identical (φo/Adot is ∼ 8 mT for the 0.5 µm2 device).

2.5.6 Significance of Distribution Results

These transport measurements demonstrate the success of random matrix theory (RMT)

and non-interacting theory in describing the statistics of quantum transport in this meso-

scopic electronic system. This is surprising considering that electron-electron interactions

are not accounted for in the theory and are sizable compared to other energy scales in these

systems.

That good agreement is found between the experimental distributions and the RMT

predictions over a broad range of temperatures is also surprising since we are investigating

the case of single-mode leads, N = 1. This is the transition between open and closed dots;

for any lower conductance to the dot, electron-electron interactions in the form of Coulomb

blockade dominate transport, leading to dramatic departures from a non-interacting picture

[Kouwenhoven97]. Some charging has been observed in small dots, although the effect is

small (see Sec. 3.4). Overall, measurements performed for N = 1 and N = 2 on the same

devices are very consistent, as will be see in Chapters 3 and 5.

One should note here that the success of non-interacting theory when describing real

metallic or semiconductor structures seems to depend on the quantity being measured. For

instance, the mean and variance of mesoscopic conductance fluctuations in open quantum

dots and disordered wires appear to be in good agreement with random matrix theory
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[Beenakker97] and sigma model calculations [Efetov95] once temperature and dephasing

effects are included, as shown in this chapter, whereas the distribution of energies needed

to add subsequent electrons to a closed dot does not appear distributed according to the

famous Wigner-Dyson law, a basic result of RMT [Sivan96, Simmel97, Patel98a].

In sum, the distribution measurements constitute a stringent test of statistical theo-

ries of mesoscopic conductance. Unlike many other experiments, there are no adjustable

parameters in these measurements.

2.5.7 Conductance Derivatives

Distributions of parametric derivatives of conductance were also investigated with respect to

magnetic field dg/dB and gate voltage, dg/dVg. These quantities are of considerable inter-

est as they are the open-system analogs of the well-studied “level velocities” dE/dX of the

energy levels in closed quantum chaotic systems [Altshuler95]. Distributions of parametric

derivatives of conductance have recently been investigated theoretically using a random-

phase-approximation “charged fluid” model [Buttiker93], which gave interesting nongaus-

sian distributions for both β = 1 and β = 2 [Brouwer97b]. Here we investigate both

P (dg/dB) and P (dg/dVg) in single-mode dots, and find that both distributions are well

described by gaussians due to dephasing and thermal averaging. We focus on P (dg/dVg),

shown in Figure 2.7 for zero and nonzero magnetic field, at T = 0.1 K and 0.2 K. Thermal

averaging dominates the width of the distribution. From this data var(g) ∝ T−1.75. Distri-

butions of dg/dB are also roughly gaussian, with variances of 9.65 mT−2 at T = 0.1 K and

0.939 mT−2 at T = 0.5 K. To observe deviations from gaussian distributions of parametric

derivatives, lower temperatures than those needed to see nongaussian P (g) are required.

2.6 Supersymmetry Theory

Another useful theory of quantum dot transport is based on supersymmetric techniques

[Efetov97]. This theory can predict of many aspects of transport through quantum dots

and provides an independent confirmation of the RMT results.

2.6.1 Conductance autocorrelation

The autocorrelation of the conductance through a mesoscopic device is a metric of the

sensitivity of the wave interference in the device to environmental and system parameters
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(energy and magnetic field), mitigated by temperature, dephasing, and degree of openness.

C(∆X) = 〈δg(X + ∆X)δg(X)〉 (2.21)

where δg(X) = g(X)−〈g〉. Efetov provides the following correlation function for a quantum

dot connected to source and drain reservoirs with N channel leads:

C(B,E) =
1
4

1
(( BBc )2 + γϕ

2N + 1)2 + ( πEN∆)2
(2.22)

It is clear from Equation (2.22) that the parametric dependence on E and B is correlated:

C(B,E) 6= C(B)C(E). This makes intuitive sense: short quantum trajectories produce

short range correlations in E, and also in B due to small swept areas; the same argument

hold for long trajectories.



34 CHAPTER 2. BASIC Q-DOT TRANSPORT: THEORY AND EXPERIMENT

At zero temperature T = 0 and for no decoherence γϕ = 0 the magnetic field autocor-

relation function is Lorentzian-squared:

C(B) =
1
4

1
(( BBc )2 + 1)2

(2.23)

The autocorrelation operation in real space is the amplitude squared (power) operation in

frequency space, so that the Fourier transform of the above C(B) yield the power spectral

density of magnetoconductance fluctuations:

S(fB) = S(0)(1 + 2πBc|fB|)e−2πBc|fB | (2.24)

which is the same result obtained classically. For energy dependence at T = 0 and γϕ = 0

we have a Lorentzian autocorrelation:

C(E) =
1
4

1
1 + ( πEN∆)2

(2.25)

S(fE) = S(0)e−2πEc|fE | (2.26)

2.6.2 Temperature

If we look at transport through a quantum system at a finite temperature, electrons are

Fermi distributed and the measured conductance is a convolution of the zero temperature

conductance and the Fermi envelope (a few kT in width), which is simply −f ′(E, T ), the

energy derivative of the Fermi function.

g(X,E, T ) = −f ′(E) ∗ g(X,E) = −
∫
f ′(ε)g(X,E − ε)dε (2.27)

For correlations of conductance we then have:

C(X,E, T ) =
∫ ∫

f ′(ε1)g(X, ε− ε1)dε1
∫
f ′(ε2)g(X, ε+ E − ε2)dε2 dε

=
∫ ∫

f ′(ε1)f ′(εT )C(X,E + ε1 − ε2)dε1dε2 (2.28)
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2.6.3 High Temperature C(E)

At very high temperatures, energy correlation is determined by the thermal envelope, since

C(X,E) is nearly a delta-function in energy on a thermal scale, and the expression in Eq.

(2.28) becomes for limit of kT much that correlation energy Ec:

C(X,E, T ) =
∫ ∫

f ′(ε1)f ′(ε2)δ(E + ε1 − ε2)dε1dε2
∫
C(X, ε, T )dε

= C(E, T )
∫
C(X, ε, T )dε (2.29)

where

C(E, T ) =
∫
f ′(ε)f ′(E − ε)dε

=
e
E
kT

(
2
(
−1 + e

E
kT

)
+
(
1 + e

E
kT

)
log(1 + e−

E
kT )−

(
1 + e

E
kT

)
log(1 + e

E
kT )
)

kT
(
1− e E

kT

)3

C(E, T ) is a function nearly identical in shape to f ′(E) except about 1.5 times wider. Below

the two are plotted in energy units of kT.
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0.15

0.2

0.25

Figure 2.8: Thermal envelopes f ′(E) and C(E, T ). f ′(E) is the narrower one.

Some properties of C(E, T ) are:

C(0, T ) =
1

6kT
and

∫
C(E, T )dE = 1

The Fourier transform of C(E, T ) is the power spectral density of energy conductance fluc-

tuations in the high temperature limit– this does not have a simple closed-form expression

and we plot the PSD calculated numerically below. Note that Fourier transform pair scale
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inversely with the dependent variable: the PSD below will contract linearly with increasing

temperature.

4 6 8 10
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-1

Figure 2.9: Energy conductance power spectrum at high T.

2.6.4 High Temperature C(B)

To compute C(B) for high temperature, we perform the integral in Equation (2.29), setting

E = 0, giving:

C(B) =
N∆
24kT

1
( BBc )2 + 1

and

S(fB) = S(0)e−2πBc|fB |

The frequency dependence of S(fB) does not change directly with temperature, but only

through dephasing via Bc(τϕ) = φ0

A(τtotal)
where τ−1

total = τ−1
esc + τ−1

ϕ .

2.6.5 Equilvalence of Supersymmetry Theory and RMT

Supersymmetry theory and Random Matrix Theory are equivalent in the limit of large N,

including the thermal limit of kT À ∆ and the presence of arbitrary dephasing.

To include dephasing in the supersymmetry results, we simply retain the γϕ
2N term in

Equation 2.22, and propagate it through the temperature integral.

To make the comparison with RMT, we generalize the formula for ∆̃ to N -mode leads

(formerly we considered only the N = 1 case):

∆̃ = ∆
2N + γϕ

2
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and make the appropriate substitution.

Variance results from both theories including temperature and dephasing are noted with

∗’s in the table below, which also serves to summarize many of the formulae presented in

this chapter. Encouragingly, the results, derived using very different theoretical approaches,

are in agreement.
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theory applies to

Basic RMT β = 1, γϕ = 0 var(g) =
4N(N + 1)2

(2N + 1)2(2N + 3)

β = 2, γϕ = 0 var(g) =
N2

4N2 − 1

φ-lead N ≥ 2, β = 2 var(g) ' N2

(
√

4N2 − 1 + γϕ)2

γϕ À 1, β = 2 var(g)→
(
N

γϕ

)2

General Thermal kT ≥ 0.6∆̃, any N var(y) =
∆̃

6kT
var(x)

∆̃ = ∆
2N + γϕ

2

Thermal RMT kT ≥ 0.6∆̃ var(g) ' ∆
6kT

2N + γϕ
2

N2

(2N + γϕ)2

' ∆
6kT

1
2

N2

2N + γϕ
∗

Supersymmetry 2π2kT
N∆ ¿ 1 + Y 2 ClowT(φ) =

1
4

1
(Y 2 + 1)2

2π2kT
N∆ À 1 + Y 2 ChighT(φ) =

N∆
24kT

1
Y 2 + 1

Y 2 = (φ/φc)2 +
γϕ
2N

φc =
φ0

2π

√
πN∆
2Ec

,φ0 = 4.14mT/µm2

(no dephasing)
Ec = π2D0/L

2, diffusive
Ec = τdwell/τcross, ballistic

Supersymmetry var(g) = C(0)

4π2kT ¿ (2N + γϕ)∆ var(g) =
N2

(γϕ + 2N)2

γϕ À 1 var(g)→
(
N

γϕ

)2

4π2kT À (2N + γϕ)∆ var(g) =
N∆
6kT

1
2

N

γϕ + 2N
∗

Table 2.2: Theoretical var(g) results summary.



Chapter 3

Dephasing Measurements in

Quantum Dots

This chapter focuses on measurements of the loss of phase coherence (dephasing) in quantum

dots. This is studied principally by measuring the weak localization amplitude, but also

using other techniques. The experiments employ devices covering a large parameter space.

Experiments were done in two phases and will be described here in that order. The first

“high temperature” measurements were performed in a Helium-3 system over a temperature

range of 335 mK to 4K. The second set of “low temperature” experiments were done in a

dilution refrigerator over a temperature range of 45 mK (the electronic base temperature

of the cryostat) to 800 mK.

The high temperature data emphasizes average weak localization curves as a primary

result, and also compares several different techniques for determining τφ. The low temper-

ature experiments focus on obtaining good statistical data for the average and variance of

the conductance fluctuations, typically at zero field and at multiple values of non-zero field

at which time-reversal symmetry is broken.

Results between these two experiments were highly consistent, including devices fabri-

cated on 2D electron gases from two different sources (see appendix B for device descrip-

tions), giving confidence in the data. Figure 3.11 at the end of the chapter combines the

results and give a composite view of τφ as a function of temperature.

The low temperature experiments were extended to study the effects of radiation, which

is the topic of Chapter 5.

39
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3.1 High Temperature Dephasing Measurements

3.1.1 Background

The weak localization technique is used here as our primary technique for determining

τϕ(T ), and is similar to standard methods used in diffusive 1D and 2D samples. This

method was applied to quantum dots for the first time in these experiments, having only

become possible due to the theoretical developments [Baranger94a, Brouwer97a] based on

random matrix theory (RMT) [Beenakker97].

3.1.2 Related Experimental Work

Most previous studies of dephasing in mesoscopic systems have focused on disordered 1D and

2D conductors, where the dimensional crossover for quantum corrections to transport and

dephasing mechanisms occurs when the sample width exceeds the phase coherence length

lϕ = √τϕ and thermal length lT =
√
Dh̄/kT , respectively (D is the diffusion constant)

[Altshuler85, Imry94]. At low temperatures, electron-phonon scattering rates are small

compared to electron-electron scattering rates [Mittal96] and two electron-electron scatter-

ing mechanisms dominate dephasing: a large-energy-transfer scattering mechanism, which

causes dephasing with a rate τ−1
ee ∝ T 2 [Zheng96, Giuliani82, Fukuyama83, Jungwirth96,

Pines96] – in a 2D electron gas (2DEG) this rate is

τ−1
ee =

π

4
(kT )2

h̄EF
ln
EF
kT

(3.1)

for kT ¿ EF where EF is the Fermi energy – and a small energy-transfer (Nyquist) scat-

tering mechanism, which gives a rate τ−1
ϕN ∝ T 2/(4−d) where d is the dimensionality of the

system (d = 1, 2) [Altshuler85]. In a disordered 2DEG the Nyquist dephasing rate is

τ−1
ϕN =

kT

2πh̄
λF
le

ln
πle
λF

(3.2)

where λF is the Fermi wavelength and le is the elastic mean free path. The total dephasing

rate due to electron-electron scattering is approximately the sum of these rates, [Choi87,

Kurdak92, Reulet95]:

τ−1
ϕ ' τ−1

ϕN + τ−1
ee (3.3)



3.1. HIGH TEMPERATURE DEPHASING MEASUREMENTS 41

Measurements of τϕ(T ) in disordered 2D and 1D semiconductors [Choi87, Kurdak92, Reulet95]

and 1D metals [Echternach93, Lin86] based on weak localization find good agreement

with these theoretical results down to ∼0.1 K. In clean 2D systems (le ≥ lϕ) the de-

phasing rate is expected to coincide with τee from Equation 3.1, without the Nyquist

contribution, which has been confirmed experimentally using high-mobility 2DEG sam-

ples [Yacoby94, Murphy95]. In isolated quantum dots (0D systems), a dephasing rate

τ−1
ϕ ∼ T 2 is expected for intermediate temperatures (lT > L but kT À ∆, where ∆ is

the mean level spacing) with a rate comparable to Equation 3.1 for ballistic dots, le > L

[Sivan94a, Blanter96, Altshuler97]. To our knowledge, there has been no explicit theo-

retical discussion of τϕ in open quantum dots despite previous experimental investigation

[Clarke95, Bird95a]. Dephasing mechanisms are discussed in detail in Chapter 4.

3.1.3 Experiment

Here τϕ(T ) is measured in ballistic quantum dots with areas ranging from 0.4 to 4 µm2 and

with single-mode point-contact leads. It is found that τϕ is independent of dot area and,

surprisingly, that τϕ(T ) is not proportional to T−2 but rather shows behavior similar to

that seen in disordered 2D conductors, including both T−1 and T−2 contributions. These

conclusions are checked with a comparison to τϕ(T ) measured three other ways in the same

devices.

As discussed in the previous chapter, for irregularly-shaped quantum dots with two leads

each supporting N channels (or lateral modes), RMT yields a zero-temperature average

conductance 〈g〉 equal to the resistors-in-series value Ne2/h at B 6= 0, but is reduced to

2N2/(2N + 1)e2/h at B = 0 due to phase-coherent backscattering (or weak localization)

[Baranger94b, Jalabert94]. Dephasing suppresses the difference, δg, by limiting the time

over which backscattered electrons may contribute to interference.

Measurements on four quantum dots (Appendix B, devices I613, I75, I77, I74) with areas

of 0.4 µm2 (two dots), 1.9 µm2 and 4.0 µm2 (∆ = 17.9, 3.8, and 1.8 µeV respectively) are de-

scribed. The dots are formed by gate depletion of a 2DEG located 160 nm below the surface

of a GaAs/Al0.3Ga0.7As heterostructure with sheet density n = 1.8 × 1011 cm−2, mobility

µ = 1.0×106 cm2 Vs, Fermi wavelength λF = 60 nm and Fermi energy EF = 6.4 meV. The

elastic mean free path measured with gates undepleted is ∼6 µm, larger than all device sizes

so that transport is ballistic within the dots. The dots were measured in a 3He cryostat at

temperatures ranging from 335 mK to 4 K using standard 4-wire lock-in techniques at 105
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Figure 3.1: Shape-averaged magnetoconductance (black) and four unaveraged conductance curves
(gray) for the 4.0 µm2 quantum dot (inset). Lower left inset: conductance as a function of Vpc1

and VpC2 showing (bracketed) plateau with N = 1 channel in each point contact. Lower right inset:
Conductance through dot as a function of Vshape1 and Vshape2 with circles marking the 47 points at
which magnetoconductance was measured.

Hz with 0.5 nA bias current. This probe current was small enough not to affect transport

due to heating– currents of 0.5 and 1 nA give identical results at base temperature (335

mK). At these temperatures, weak localization and UCF are comparable in magnitude,

as seen in the gray traces of Figure 3.1. By averaging over gate-voltage-controlled shape

distortions, UCF is averaged away leaving only the weak localization correction. The exact

measurement procedure is illustrated in Figure 3.1. First, depletion gates Vpc1 and VpC2

are swept in a raster to find the plateau with N = 1 channel in each lead (bracketed region

lower left inset). While the leads are maintained at one channel each, the shape of the

dot is distorted using Vshape1 and Vshape2, creating an effective ensemble of dots. The 47

circled points on the conductance landscape in the lower right inset indicate the positions

in (Vshape1 − Vshape2) space of the samples used in the ensemble. Figure 3.1 shows g(B) at
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four of these 47 points, along with the average 〈g(B)〉 of all 47 points used to determine δg.

3.1.4 Weak Localization and Dephasing Times

Figure 3.2 shows δg at N = 1 as a function of temperature for the four devices. Using γϕ(δg)

from Ref. [Brouwer97a], each point in Figure 3.2 is converted to γϕ and then, using Equation

2.7, to τϕ. The resulting τϕ(T ) is shown in Figure 3.3. While dots with different areas have

different values of δg and γϕ, τϕ appears to be independent of area. The high temperature

roll-off of τϕ seen in Figure 3.3 for larger devices likely results from a breakdown of the

model [Brouwer97a] when lϕ becomes of order L, so that nonergodic trajectories dominate

coherent backscattering. The inequality L > lϕ holds throughout the measured range of

temperatures, however L ∼ lT = vf h̄/kT at 2.2 K, 0.97 K and 0.69 K for the 0.4 µm2, 1.9

µm2 and 4.0 µm2 dots respectively. As seen in Figure 3.3, the temperature dependence of τϕ
for all four dots falls between τϕ ∝ T−2 and τϕ ∝ T−1. The data cannot be fit by τee alone

(dashed line in Figure 3.3) but are well fit by the sum of dephasing rates for diffusive 2D

systems, Equations 3.1 and 3.2, (solid line in Figure 3.3) if we choose le = 0.25 µm, giving

τ1
ϕ[ns−1] = 10.9(T [K]) + 6.1(T [K])2. We do not know if the value of le corresponds to any

physical length in the problem; certainly it is much shorter than the le of the unconfined

electron gas.

We note that τϕ(T ) does not show a low-T saturation over the temperature range

reported. As will be shown in Sec. 3.2, measurements down to an electron temperature of

45 mK show some saturation below 100 mK, and a τϕ(T ) consistent with the present data

above 100 mK. As will be discussed in Chapter 5, direct application of microwave radiation

(40 MHz to 25 GHz) to the sample has also been shown to cause a saturation in τϕ(T ) at

higher temperatures but does not cause the Nyquist-like τϕ(T ) dependence observed here.

3.1.5 Other techniques to measure τφ

To check the results based on weak localization amplitude at N = 1 (which will be labeled

δgN=1 here), we compare to three other measurements of τφ(T ) in the same devices (figure

3.4). The first comparison is to τφ(T ) obtained from weak localization amplitude at N = 2

(labeled δgN=2), measured as above, and using Equations 2.7 and 2.9 to convert from δgN=2

to τφ. The δgN=2 and δgN=1 results are consistent within experimental error as shown in

Figures 3.4(a) and 3.4(b) for the 0.4 µm2 and 4.0 µm2 dots.
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Figure 3.2: Shape-averaged weak localization amplitude δg vs. temperature T for the four mea-
sured devices. Error bars reflect uncertainty in as a result of conductance fluctuations remaining
due to limited ensemble size. Inset: Theoretical phase breaking rate γϕ(δg) using φ-lead model
[Baranger94a] (Equation 2.7) and distributed voltage probe model (BB) [Brouwer97a].

A second comparison is to τφ(T ) extracted from power spectra of UCF, a method de-

scribed previously in Ref. [Clarke95]. This method makes use of the fact that UCF measured

as a function of B in open quantum dots has an exponential power spectrum [Efetov95],

S(f) = S(0)e−2πBcf (3.4)

where f is magnetic frequency in cycles/mT. The characteristic magnetic field Bc depends

on the dephasing rate:

(Bc/ϕ0)2 = K(2N + γϕ), (3.5)

where K is a geometry-dependent constant and ϕ0 = h/e is the quantum of flux [Clarke95].

Figure 3.4(c) shows power spectra of g(B) for the 4.0 µm2 dot, consistent with Equation

3.4 over three orders of magnitude. A two-parameter fit of Equation 3.4 to power spectra

at each temperature gives a Bc(T ) which yields τφ(T ) via Equation 3.5, with K chosen as



3.1. HIGH TEMPERATURE DEPHASING MEASUREMENTS 45

5
6
7
8
9

0.01

2

3

4

5
6
7
8
9

0.1

2

3

4

5

τ φ
 (

ns
)

3 4 5 6 7 8 9
1

2 3 4 5

T (K)

τ τφee N
− − −

+( )1 1 1

τ ee

 0.4 µm2

 0.4 µm2

 1.9 µm2

 4.0 µm2

 

 
 
le = 0.25 µm (τee

-1 + τφN
-1)

-1

T
-1

T
-2

1 µm1 µm

1 µm

Figure 3.3: Phase coherence time τϕ determined from N = 1 weak localization. τee from Equation
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ee for a 2D disordered system with le = 0.25 µm (solid) are shown
for comparison. Dotted lines indicate slopes corresponding to T−1 and T−2, offset for clarity.

a best fit to the δgN=1 data. Figure 3.4(d) compares τφ(T ) determined from UCF power

spectra with that from δgN=1, showing good agreement over the whole temperature range.

A final comparison is to τφ(T ) extracted from the width of the Lorentzian dip in average

conductance around B = 0 [Baranger93a, Chan95]

〈g(B)〉 = 〈g(B)〉B 6=0 −
δg

1 + (2B/Bc)2
. (3.6)

Figure 3.4(e) shows traces of shape-averaged 〈g(B)〉 for the 4.0 µm2 dot, along with two-

parameter (δg and Bc) fits to Equation 3.6. Values for τφ(T ) in Figure 3.4(f) are extracted

from Bc(T ) using Equation 3.5, with K chosen to give a best fit to the δgN=1 results.

It is noteworthy that several very different methods of determining τφ(T ) agree to within

experimental error.
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Figure 3.4: (a), (b) Comparison of τϕ extracted from average N = 1 and N = 2 weak localization
amplitude for 0.4 µm2 and 4.0 µm2 dots. (c) Fit of Eq. 3.4 to power spectral density for N = 1
conductance fluctuations and (d) comparison of extracted from the characteristic field scale of UCF
and from weak localization amplitude for 4.0 µm2 dot. (e) Lorentzian fit (Equation 3.6) to average
N = 1 weak localization lineshape and (f) comparison of extracted from the weak localization width
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3.2 Low Temperature Dephasing and Saturation of τϕ

A second series of low-temperature measurements of the weak localization amplitude was

performed. Although the results are consistent with from the dephasing rate dependence ob-

served at higher temperatures, which follows AT+BT 2, a saturation of the phase coherence
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time τϕ is observed at temperatures below 100 mK, twice the electronic base temperature

of the dilution cryostat. The saturation/roll-off appears to be genuine because in quantum

dots, the electron temperature can be accurately determined in situ from either the width

of Coulomb blockade (CB) peaks in dots with tunnel leads [Folk96], or from the variance

of conductance fluctuations in devices with single or multi-mode leads.

Previous work has reported a similar unexpected saturation of dephasing at low temper-

atures in a variety of systems [Mohanty97a, Bird95a, Clarke95] and there have been many

efforts to explain this phenomenon [Mohanty97b, Khavin98, Altshuler98].
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Figure 3.5: Weak localization amplitude δg as a function of temperature in quantum dots with
single mode leads and an area A of 1.6 µm2 (triangles), 3.0 µm2 (circles), and 8.0 µm2 (squares).
Inset shows average of 20 magneto-conductance traces for 1.0 µm2 device, clearly showing weak
localization along with Lorentzian fit. For reference δg = 0.263 for γϕ = 1 and 0.215 for γϕ = 2.

3.2.1 Experiment

The four two-lead dots investigated in this set of measurements were formed using de-

pletion gates located 90 nm above a two dimensional electron gas (2DEG) present at a
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from ensembles with ∼ 400 independent conductance points, drawn from conductance landscapes
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GaAs/Al0.3Ga0.7As hetero-interface. Electron micrographs of e-beam patterned Au/Cr gate

electrodes are shown in Figure 3.7, inset, and also in Appendix B (devices C22, C32, C88,

C15). With sheet density of 2 × 1011 cm−2 and mobility 1.4 × 105 cm2/Vs, transport is

ballistic as the elastic mean free path of 1.5 µm is comparable to the size of the devices,

which have areas of 1.6, 3.0, and 8.0 µm2 (two devices). In the quantum dots studied in this

experiment, electron trajectories are predominantly chaotic, allowing the theory of Chapter

2 to be applied. Corrections due to interactions have been discussed recently [Aleiner98b]

and will be addressed shortly. The measurements were performed in a dilution refrigera-

tor with a mixing chamber base temperature of ∼ 28 mK. The electron temperature from

this peak width T2DEG versus the cryostat temperature T (as measured using an RuO2
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resistor) is shown in the inset of Figure 3.7. The electron base temperature in our device

was measured to be 45 mK from the CB peak width. This low temperature was achieved

with careful filtering of the wiring both at room temperature and on entry to the continu-

ous cold metal shield surrounding the device being measured. In addition, analog lockins

with measurement bias voltage Vbias ' 2µeV (< kT/e) were employed (see Appendix D for

measurement setup details).
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Figure 3.7: Phase coherence time τϕ as a function of temperature as determined from weak
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Figure 3.5 shows the weak localization amplitude δg = (〈g〉B 6=0−〈g〉B=0) versus electron



50 CHAPTER 3. DEPHASING MEASUREMENTS IN QUANTUM DOTS

temperature. Here B 6= 0 denotes broken time-reversal symmetry. In the absence of de-

phasing and e-e interactions, 〈g〉B 6=0 = N e2/h and δg = N
2N+1 e

2/h where N is the number

of modes supported by each lead [Beenakker97]. The suppression of weak localization due

to finite phase coherence time τϕ can be approximated by (Eq. 2.12):

δg ' e2

h

N

2N + 1 + γϕ
(3.7)

where the normalized dephasing rate γϕ = 2πh̄/(τϕ∆). ∆ = 2πh̄2/m∗Adot is the spin-

degenerate mean level spacing where Adot is the dot area adjusted for depletion. As seen in

Figure 3.5, the 1/3 e2/h value (for N = 1) is approached experimentally in smaller devices

at low temperatures as γϕ falls below 1.

Conductance variance var(g) is related to δg and T ([Baranger95, Huibers98b], also

disussed in Sec. 2.5.4). In the case of broken time-reversal symmetry:

var(g) =
∆

6kT
f(γϕ), (3.8)

where

f(γϕ) =
2

2 + γϕ

1
(
√

3 + γϕ)2
. (3.9)

f is solely a function of δg for fixed N , via Equation 3.7. Equation 3.8 predicts a T−1

dependence for fixed or very small γϕ. As seen in Figure 3.6, this is observed at low tem-

peratures, where dephasing appears saturated in large dots, and is of negligible effect in

small devices due to short dwell time (γϕ ¿ 1). Thus var(g) acts as a thermometer at

low temperature and is consistent with the CB results. For all data shown, the mean and

variance of the conductance fluctuations are measured by rastering across the shape and

energy conductance landscape of the device using shape-distorting gates, while simultane-

ously tuning the quantum-point-contact leads to each support N = 1 mode, a technique

described in Ref. [Huibers98b].

Figure 3.7 shows the dependence of the phase coherence time τϕ on the electron tem-

perature. As in Fig. 3.5, temperature is measured from the CB peak linewidth. Above 100

mK, the dephasing rate τ−1
ϕ has an A T + B T 2 dependence consistent with the results

of [Huibers98a]. Below 100 mK however, the measured τϕ begins to saturate. A simple

explanation for this roll-off would be loss of thermal contact of the electron reservoirs and
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the cryostat. However, the consistent electronic temperature measurement using two in-

dependent techniques outlined above indicates that the phase coherence roll off is not a

saturation of T2DEG.
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The measurements of τϕ taken in these experiments are quite robust as demonstrated in

Figures 3.8 through 3.10:

1. Figure 3.8 displays on a single graph τϕ(T ) for two different 8 µm2 devices.

2. The data in Figure 3.9 were taken for the same device on three sequential days,

showing repeatability over time.
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3. Figure 3.10 shows for τϕ(T ) for both N = 1 and N = 2 in the same device. This serves

to verify the model being using to extract τϕ and also indicates that electron-electron

interaction effects at N = 1 are probably small in this device.

In addition to the consistency shown above, carefully calculated error bars are shown for the

data in this chapter to guage confidence in the data. The errors in average quantities (e.g.

errors in the estimate of the average conductance) have been determined by resampling the

data in subsets that are as distant as possible so as to account for some systematic error.

Such systematic error may be caused by imperfect quantum point contacts or non-ergodic

transport through the device.

A composite graph of all τϕ data (low temperature and high temperature) is shown in

Figure 3.11. Some variability is observed in the absolute τϕ magnitude but overall the trend

follows the composite rate (the sum of Equations 3.1 and 3.2) for the large-energy-transfer

and small-energy-transfer (Nyquist) electron-electron scattering.

The predicted phase coherence time of Sivan et al. [Sivan94a] for isolated systems is

τϕ = 0.0080 T 2 for energies less that the Thouless energy, Eth (see discussion in Section

4.5). This is plotted as a dotted line on Figure 3.11. This theory predicts a much higher

rate than is observed, and does not account for the slower than T 2 rate dependance at low

temperatures.

3.2.2 Electron-electron interactions

The effect of Coulomb interactions on the results of the preceding sections is worthy of

consideration. In the absence of dephasing, Brouwer and Aleiner [Brouwer98] predict an

interaction induced enhancement of δg from 1
3 e

2/h to (1
3+ ∼ 0.081∆

T ) e2/h at N = 1. In an

8.0 µm2 dot at the lowest measurement temperature of 45 mK, this is a 5% enhancement.

One should note that enhanced δg does not contribute to dephasing rate saturation but

rather has the opposite influence. Coulomb interactions are also predicted to increase

variance by a factor 1+ ∼ 2.0 ∆
kT for the large N limit. The sizes of both of these corrections

can be appreciable, however at present there is no theory developed for our experimental

situation with single-mode leads and appreciable dephasing.
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3.3 Transport Under High Bias

The measurements described up until now have been for a small signal applied to the

quantum dot. If the measurement bias voltage is kept below kT , no Joule heating will

be observed [Switkes98]. As the measurement bias exceeds kT , “hot” electrons enter the

dot and transfer energy to the other electrons in inelastic collisions. The study here of dc

source-drain bias will prove useful in Chapter 5, when ac bias due to radiation is considered.

3.3.1 Detailed balance model

If the inelastic collision time is shorter than the dwell time, the electrons in the quantum

dot reach a pseudo-equilibrium temperature. If the leads are balanced, the Fermi energy of

the dot will be midway between the Fermi energies of the two reservoirs.

The total energy flowing into the dot via transport electrons must equal the total energy

flowing out of the dot:

∫
EFdot(E)(1− Fleft(E)) + EFdot(E)(1− Fright(E))dE =∫

EFleft(E)(1− Fdot(E)) + EFright(E)(1− Fdot(E))dE (3.10)

where Fleft and Fright are Fermi functions with temperature Tres and EF = +V/2 and

−V/2 respectively. Fdot is a Fermi function with temperature Tdot and EF = 0.

Given the above information, one can solve the integrals in Equation 3.10 to obtain Tdot
given bias V and reservoir electron temperature Tres. The result is:

(kTdot)2 = (kTres)2 +
3

4π2
(eV )2

Tdot =
√
T 2
res +

3
4k2π2

(eV )2 (3.11)

Equation 3.11 is the equivalent of the Wiedemann-Franz law for quantum dots. Figure

3.12 shows the energy distributions of electrons in the reservoirs and the quantum dot.
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Figure 3.12: Electron energy distributions in the two reservoirs (leads) and the dot for reservoir
temperature 385 mK = 33.1 µeV and a bias of 150 µeV. The equilibrium temperature in the dot
Tdot = 616 mK = 53.0 µeV.

3.3.2 Experimental results

Single magneto-conductance traces for different measurement voltage biases are shown in

Figure 3.13 in the 4.0 µm2 dot (I74). These are fingerprints of the transport in the de-

vice. One observes that the trace for T = 600 mK can be reproduced with trace at lower

temperature (385 mK) but with finite bias (165 µV).
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Figure 3.13: Thick traces show low-bias magneto-conductance curves at temperatures of 385 mK
and 600 mK. Thin dotted traces are magneto-conductance curves for a reservoir temperatures of
385 mK and increased measurement bias, as indicated.
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Figure 3.14: Equivalent temperature in the dot Tdot shown as a function of voltage bias for reservoir
temperature Tres = 385mK = 33.1µeV. The experimental data are plotted along with the expected
result as calculated from Equation 3.11.

If the single traces for different temperatures are matched to traces for biases at a

fixed temperature, one can test the expression of Equation 3.11, which has no adjustable

parameters. Experimental results are shown in Figure 3.14 - one sees that the agreement is

excellent.

A somewhat different presentation of this data in the context of using a quantum dot

as a magnetometer is developed in [Switkes98].

3.4 Coulomb Blockade at N = 1

The discussion and theories of transport in Chapter 2 assume that charging (Coulomb-

blockade) is absent in open quantum dots, normally defined as connected to the environment

with at least one lead supporting one or more quantum modes. The effect of mean electron-

electron interactions was considered in Sec. 3.2.2. These effects, although potentially very

large in small cold devices, have not been isolated experimentally.

In the present case of the quantum dot is connected to reservoirs with two leads each

supporting a single mode. Remnant Coulomb charging effects, however, are observed as

shown in Figures 3.15 and 3.16. Since both the amplitude and voltage-scale of the Coulomb-

blockade-like charging are small compared to the conductance fluctuations, this effect is easy
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to miss. Mesoscopic charging is a topic of ongoing investigation – specifically the “frying-

pan” mode, where transport is studied in a quantum dot with one N = 1 lead and one

tunnel lead [Matveev95, Aleiner96, Cronenwett98].
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Figure 3.15: Find scale pin scan showing traces of Coulomb blockade in 2.0 µm2 dot (C2) at B = 0
mT.
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mT.



Chapter 4

Dephasing and Interaction

Mechanisms

4.1 Loss of Phase Coherence

Decoherence is the process by which the quantum mechanical properties of a microscopic

system are transformed into the familiar classical behavior seen in macroscopic objects.

Semiconductor quantum dots are one of the most direct probes of quantum coherence

available. As seen in the preceeding chapters, a quantum dot with two leads is an inter-

ferometer: if electrons interact during the time period bounded by their entry into and

exit from the dot, and scatter into new quasiparticle states, interference patterns and other

effects that require quantum coherence (such as weak localization) are attenuated.

The key time scale of for the loss of coherence is the phase coherence time, τϕ, which de-

termines the energy and length scales at which quantum behavior is seen. Considerable the-

oretical [Altshuler85, Sivan94a, Blanter96, Imry94] and experimental [Echternach93, Lin86,

Choi87, Kurdak92, Reulet95, Yacoby94, Clarke95, Bird95a] study has been directed toward

understanding phase loss mechanisms and their dependence on temperature, dimensionality,

and disorder.

In this chapter we review many dephasing and interaction mechanisms that are relevant

to transport in mesoscopic nanostructures including quantum dots. It should be noted that

the parameterization of all dephasing phenomena with a dephasing time τϕ (rate τ−1
ϕ ) is an

approximation, albeit a good one. τϕ is not, strictly speaking, a relaxation time but rather

a typical time scale. In other words, dephasing rates from multiple sources do not strictly

59
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add; dephasing processes can be interrupted by other processes in a non-linear way. See

[Echternach93, Lin86] or [Altshuler85, p. 70] for further discussion.

4.2 Electron-electron scattering (T 2)

Electron-electron scattering is analogous to four-wave mixing in non-linear optics, where

two waves couple to two other waves within matching constraints. Although one can think

of scattering “events” one can visualize a continuous process: the scattering rate quantifies

the transition from one quantum state (set of states) to another.

In nonlinear optics, charges fixed at atomic sites couple photon waves, but here the waves

themselves carry charge. For an electron gas with a Fermi distribution, the e-e scattering

rate is dependent on the energy of the electron engaged in scattering E and the temperature

of the gas T . The result to first order is

τ−1
ee = C1E

2 + C2(kBT )2 (4.1)

The squared power-law dependence can be supported with a state-counting argument. Fig-

ure 4.1 show the Fermi k-space diagram for a 2D electron gas. An electron-electron scatter-

ing transition/event involves two electrons with conservation of energy and momentum. In

the Figure, an electron with momentum h̄k1 scatters with an electron (with momentum h̄k2)

in the zero-temperature Fermi gas. Two new states must have the same center of momen-

tum (labeled “CM”) and obey energy conservation, which constrains them to the shaded

region. These combined constraints combine to limit the destination momentum states to

a pair of arcs (not shown) in the grey area, symmetric about CM, and each with length

proportional to E. Since the areal state density is uniform, this leads to an E × E = E2

rate dependence.

Experiments by Yacoby and coworkers in GaAs/AlGaAs 2DEGs have observed a square-

law τee dependence with a two-arm interferometer both as a function of electron energy

[Yacoby91] and temperature [Yacoby94]. Murphy et al. have seen a near-T 2 dependence in

measurements of tunneling rates between two 2DEGs [Murphy95]. An E2 dependence in

quantum wires has also observed by [Linke97a].
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Figure 4.1: Fermi surface and k vectors.

Using a perturbative approach for small kT/EF , based on the random phase approxima-

tion, Giuliani and Quinn have derived a classic result for τee for a 2D system: [Giuliani82]:

τ−1
ee =

1
2π

(kT )2

h̄EF

[
ln
EF
kT

+ 1 + ln(
2qTF
kF

)
]

(4.2)

where qTF = 2me2/εh̄2 (ε is the dielectric constant) is the Thomas-Fermi screening wave

vector. This result is widely quoted in experimental work [Murphy95].

Zheng and Das Sarma [Zheng96], pointing out inadequecies in the Giuliani-Quinn theory

(which are fairly subtle from an experimentalist perspective) have rederived τee in a 2D

electron gas (2DEG) as:

τ−1
ee =

π

4
(kT )2

h̄EF
ln
EF
kT

(4.3)

for kT ¿ EF where EF is the Fermi energy.

4.3 High Frequency Electric Fields

In Altshuler et al.’s groundbreaking 1981 paper [Altshuler81] dephasing due to high fre-

quency electric fields (frequency of the same order as the dynamic times scale) is considered.
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The phase uncertainty 〈δφ2〉 calculated over frequency Ω is:

〈δφ2〉 = 〈
∫
dΩα(Ω)f(Ωt)〉 (4.4)

where

f(x) = x

[
1 +

sin2x
2x

− 2
sin2x

x2

]
(4.5)

and

α(Ω) =
2e2DE2

h̄2Ω3
(4.6)

Note that

f(x) = x xÀ 1

f(x) =
2x5

45
x¿ 1

When 〈δφ2〉 ∼ 1 there is a suppression of coherence.

For single-frequency excitation,

〈δφ2〉 =
2e2DE2

h̄2Ω3
f(Ωt)

The time t when this quantity becomes ∼ 1 is the dephasing time τϕ resulting from E-field

dephasing. This time is:

τϕ =
1
Ω

( 45
2α(Ω)

) 1
5 αÀ 1

τϕ =
1

Ωα(Ω)
α¿ 1

These power dependencies have not been observed consistently in practice, which is

likely due to the presence of heating [Wang87, Vitkalov88, Liu91, Webb98].

In the radiation experiments in Chapter 5 we will see that heating and the resulting

broadening of the Fermi function is the dominant effect of electric fields applied is a non-

specific manner to quantum dots: coupling to the source-drain reservoirs is much more

important in this case than the modification of the electron’s environment by the dynamic

electric field itself.
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4.4 Nyquist mechanism

The expectation value of the variance of the electric fields produced by a sea of thermal

electrons (the Nyquist field) is:

〈E2〉 ∼ kT

σ[l(t)]d
(4.7)

where d is the system dimensionality, l(t) =
√
Dt and conductivity σ = e2Dνa3−d.

In the low power limit, Equation (4.4) becomes:

〈δφ2〉 ∼ 〈α(Ω)〉Ω

∼ Te2

σh̄2D
1−d/2t2−d/2

which approaches 1 at time:

τϕ ∼
( h̄2Dd/2νa3−d

T

) 2
4−d (4.8)

a is a transverse dimension.

With proper units and so forth [Altshuler85] in a disordered 2DEG the Nyquist dephas-

ing rate is

τ−1
ϕN =

kT

2πh̄
λF
le

ln
πle
λF

(4.9)

where λF is the Fermi wavelength and le is the elastic mean free path.

4.5 Quantum Dot Quasiparticle Lifetime

Using a Golden Rule approach for a finite sized system, Sivan et al. [Sivan94a] find a

dephasing rate for kT < Eth of

τ−1
ϕ =

32∆
π

Ξ
( kT
Eth

)2
(4.10)

where Eth is the Thouless energy, i.e. inverse crossing time, which is π2D
L2 in a diffusive

system, and can be presumably taken as h̄vF /
√
A for a ballistic system. For a ballistic

device, Ξ = 9
4 [Clarke95]. Note that for ballistic systems, the rate given by Equation 4.10

is independent of dot area since ∆ ∝ 1/A.
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In the high temperature limit,

τ−1
ϕ = 35∆

( kT
Eth

) 3
2 (4.11)

which is equivalent to the Nyquist rate in 3D (the description of Nyquist dephasing in Sec-

tion 4.4 applies only to 1D and 2D systems – a full treatment may be found in [Altshuler85]).

The dephasing rates of Equations 4.10 and 4.11 are a result of interaction processes with

small momentum transfer, as compared to the large momentum and energy transfer process

of Section 4.2, and can be thought of as scattering due to the density fluctuations that exist

within the confined dot environment (fluctuation wavelength comparable dot size).

This formulation is for closed systems and is applied to the present regime (open quan-

tum dots) with caution. Experimentally, we observe a strong departure from a T 2 dephasing

rate at low temperatures, as was seen in Section 3.2.1.

In closed systems, the quasiparticle lifetime is predicted to diverge sharply at low energies

(temperatures) as the number of accessible single and multi-particle states becomes limited

[Altshuler97].

4.6 Intrinsic Dephasing

It has been recently proposed that zero-point fluctuation of the electromagnetic environment

result in an upper limit on τϕ in electronic systems of τ0:

τ0 =
(e2d2Rm∗D3/2

4πh̄2L

)2
(4.12)

where d is the dimensionality, R is the sample resistance, m∗ is the effective mass, D is the

diffusion constant and L is the length of the sample. This formula is so far valid only for

1D disordered films [Mohanty97a, Mohanty97b].

The validity of this theory has been challenged by Altshuler and coworkers [Altshuler98]

who argue that small quantities of radiation leaking into the experiment must cause observed

saturation. Although Equation 4.12 seems to give a reasonable prediction of saturation of

the data presented in [Mohanty97a, Mohanty97b], experiments performed with 1D conduc-

tors in a regime of high-disorder [Khavin98] do not observe the predicted saturation. The

prospect of there being some sort of intrinsic dephasing is an active subject of debate. Other

possibilities for saturation effects include switching noise as a result of quantum tunneling.
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4.7 Electron-phonon Scattering

In semiconductors there are interactions between the electrons and excited modes of the

charged lattice. At low temperatures electron-phonon scattering rates are small compared

to electron-electron scattering rates and have a rate proportional to T 3, which has been

observed experimentally in GaAs/AlGaAs 2DEGs. Using a dilution refrigerator, Mittal

and coworkers observed that τe−ph = 5 ns at 1K [Mittal96]. This rate is too low to have an

effect in the experiments here.

4.8 Spin-orbit Scattering

The spin-orbit scattering time in AlGaAs is expected to exceed the measured τϕ by at

least an order of magnitude over the temperature range studied [Millo90, Dresselhaus92].

Significant spin-orbit scattering would lead to a local maximum of conductance at B = 0,

which is not observed. This is seen in Figure 4.2, which shows weak localization curves at

low electron temperature, along with expected fit (Equation 3.6) .
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Figure 4.2: Weak localization curves for different temperatures along with Lorenzian fit.
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4.9 Summary

Over the temperature range of the experiments described in this thesis, electron-electron

interactions are believed to be the dominant dephasing mechanism.

Experimentally as seen in Chapter 3 (see for example Figure 3.11), we observe a slower-

than-T 2 temperature dependence for the dephasing rate. Surprisingly, the measured de-

phasing rates in quantum dots agree very well quantitatively with the rates expected for

disordered 2D systems, where dephasing is a sum of contrubitions from electron-electron

scattering and from Nyquist interactions. This indicates that some type of Nyquist dephas-

ing may be taking place in our open dot system that is different from that calculated by

Sivan et al. [Sivan94b].



Chapter 5

Microwave Excitation of Quantum

Dots

5.1 Introduction

In order to investigate the role of electromagnetic coupling to the dot’s environment on de-

phasing, we have deliberately applied a microwave electromagnetic field over a broad power

level and frequency range. We observe that the microwave field increases the dephasing rate,

and that the increase can be fully attributed to heating of the transport electrons, which

can be independently measured. The effect of the microwave field can be modeled as a

voltage bias on the source and drain reservoirs, with transport electrons heated in a manner

analogous to Joule heating. Nonlinear Coulomb blockade measurements show rectification

and support this picture. Since the electromagnetic coupling observed produces dephasing

commensurate with the observed heating, the existence of background microwave-frequency

electromagnetic fields is not a satisfactory explanation for the rolloff in phase coherence time

for electron temperatures below 100 mK or the observed sub-T 2 dephasing rate, which re-

main unexplained. Previous work investigating the effect of microwaves on transport in

metal films [Liu91, Wang87], wires [Webb98] and in silicon MOS structures [Vitkalov88]

have observed the reduction of phase coherence with radiation, but the relative importance

of Joule heating versus a truly ac effect is unclear.

In order to investigate the saturation of the temperature dependence, microwave fields

were deliberately coupled into the quantum dot devices. The coupling geometry is shown

in the Figure 5.1 inset: a 1.5 mm coaxial waveguide is attached to an open biaxial antenna
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segment of width and length ∼ 7 mm which is positioned 4 mm above the sample. Note that

since the electromagnetic wavelength (1 GHz = 30 cm) is much larger that the geometrical

dimensions of the apparatus, the radiation is near-field.
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Figure 5.1: Main axes: weak localization amplitude δg versus conductance variance for 3.0 µm2

quantum dot, for temperatures between 83 mK (upper right) and 400 mK (lower left), along with
measurements taken at the electronic base temperature of 83 mK (cold metal shield partly removed)
and a range of microwave powers at four different frequencies. Connected lines show theoretical δg,
var(g) relationship calculated for the case of reservoir temperature fixed at Tres = 83 mK (dashed),
and for the case of changing reservoir temperature (solid). For changing reservoir temperature,
Tres(δg) is obtained from temperature series data. Inset compares single magnetoconductance traces
at different microwave power levels at 700 MHz for T = 83 mK (dots) with traces taken for increasing
electron temperature (lines).



5.2. MEASUREMENTS 69

5.2 Measurements

In Figure 5.1, δg is plotted versus var(g) in order to compare measurements made at in-

creasing temperature (solid circles) with increasing microwave power levels (open symbols).

The two data sets are seen to have the same parametric dependence to within experimental

error. We investigate the data with two theoretical cases using Equation 3.8, where δg is

direectly related to γϕ by the relation δg ' e2

h
1

2N+1+γϕ
(Equation 2.12).

The first case is for variable dephasing and fixed temperature (no electron heating). T

is held fixed at 83 mK, the measured base temperature of the devices during the microwave

measurements with some shielding removed. For this case, δg is a parametric function of

var(g) only, and the theoretical δg versus var(g) is plotted on Figure 5.1 as a dashed line.

The second case is dephasing due to electron heating. Therefore T is derived from the

experimentally measured curve T (δg), for no applied microwave field. The solid line in

Figure 5.1 shows the resulting var(g).

The good agreement of the temperature dependence of the experimental data with this

solid line, and the overall indistinguishability of microwave radiation data and data taken

with direct heating of the cryostat, indicates that the primary effect of the microwave

electromagnetic field is to heat the electrons. This conclusion is further supported by the

observation that single magneto-conductance traces for cryostat temperatures of 150 mK

and 260 mK (plotted in Figure 5.1 inset) are nearly identical to traces at base cryostat

temperature and appropriate microwave power levels.

The magnetoconductance data of the inset of Figure 5.1 is shown in expanded form

in Figure 5.2 for a large range of power levels and temperatures. Again the thermal and

microwave power traces are nearly identical. Note that the -90 dB measurement is done

twice, once at the beginning of the measurement data set and once at the end, and that the

two resulting curves are nearly identical. Thus there is not significant drift over the curve

measurements. Such drift occurs due to charge switching (see Appendix B). In general,

radiation did not appear to affect “switching noise” in the devices.

We explore these thermal and radiation-modified magnetoconductance “fingerprints”

further in Figures 5.3, 5.4 and 5.5. In Figure 5.3 we see a case in which the trace for

increased temperature (solid line, 100 mK) does not exactly coincide with the microwave

traces, which are grouped together. This small amount of deviation could possibly be

accounted for by the difference in electronic energy distribution between the pure thermal
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(Fermi distributed) and microwave-excited (sinusoidal smear) cases. Close inspection of

curves at two different frequencies shows detectable differences between frequencies, as seen

in Figure 5.4. To amplify the difference between traces taken for different frequencies, Figure

5.5 shows the residual magnetoconductance after the average over five different frequencies

has been subtracted off. It is very interesting that low and high frequencies group together:

these differences are small, but indicate the presence of an effect with definite time scales.
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Figure 5.2: Magneto-conductance curves for incremental radiative power levels at 700 MHz (sym-
bols) match well with curves taken at elevated temperature.
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5.2.1 Joule heating

Fixed source-drain bias held across a quantum dot will heat the electrons in the device as

described in Sec. 3.3 and Ref. [Switkes98]. If the electron energies are Fermi distributed,

the degree of heating can be calculated using an adaptation of the Wiedemann-Franz law.

The relation between dot equilibrium temperature Tdot, reservoir temperature Tres, and bias

VSD is T 2
dot = T 2

res + 3π2

4k2e2
V 2

SD (Equation 3.11). Given Tres, VSD can be calculated from the

above relation if we estimate Tdot from conductance measurements. Tdot for N = 1 data

is estimated by matching δg, var(g) measurements (figure 5.1) for increasing microwave

powers with those for increasing temperature. For the Coulomb blockade data, Tdot can be

determined directly from the CB peak width, which is shown for different power levels in

Figure 5.6.

Estimated bias voltage versus microwave power for both CB and N = 1 for four different

frequencies (100 MHz to 25 GHz) is shown in Figure 5.7. The dependance of VSD on

microwave power closely follows a P ∝ V 2 relation (dashed line) over more that an order of
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magnitude. This is strong evidence that microwave coupling to the device Joule heats the

device primarily through source-drain fluctuations.

It is clear that even though the slopes are identical for the data in Figure 5.7, the absolute

coupling at different frequencies varies widely. This coupling seems to be predominantly

frequency dependent– the heating for CB and N = 1 are highly correlated, and is likely due

to the coupling of the antenna to the quantum dot structures. To get a third measurement

of coupling, the effect of the microwave radiation on three of the quantum point contacts

was studied for different frequencies as shown in Figure 5.8. For a given frequency, it is seen

that the microwaves heat/couple to the different QPCs about equally, indicating that the

effect is classical. Note that the CB and N = 1 data were taken on two different devices,

however, these were located only ∼0.9 mm apart from other on the same substrate.

The rigid coax connecting the microwave generator to the antenna attenuates as ex-

pected without any significant resonances up to 15 GHz as seen in Figure 5.9. Coupling

differences for frequencies below 15 GHz are likely due to antenna and dilution fridge cavity

geometry.
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Figure 5.7: dc source-drain voltage required to produce the heating effect observed in measurements
of the Coulomb blockade peak width (solid symbols) in the 1.0 µm2 devices and of weak localization
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in power i.e. P = V 2/R. This is convincing evidence that reservoir coupling is the most important
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freq QPC1 on 1 µm2 dot QPC1 on 3 µm2 dot QPC2 on 3 µm2 dot
200 MHz -25 dB -23 dB -21 dB
900 MHz -50 dB -49 dB -48 dB
1 GHz -36 dB -36 dB -36 dB
7 GHz -44 dB -43 dB -40 dB
25 GHz -33 dB -24 dB -20 dB
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Figure 5.8: QPC comparison – powers required to create equivalent QPC trace washout in the two
devices studied. Representative raw QPC data shown at bottom. QPCs are relatively rebust to
energy smearing and high equivalent temperatures ∼1 K must be reached to have smearing.
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5.2.2 Non-linear Coulomb blockade

The picture of Joule heating by reservoir fluctuations is consistent with data taken in the

non-linear Coulomb blockade regime with microwave fields present. A detailed description of

non-linear Coulomb blockade can be found in [Stewart99]. Figure 5.10 shows the differential

conductance through the 1.0 µm2 device as a function of the voltage applied to a side gate

(energy) and the source-drain voltage. For measurements taken at fixed temperature, with

no microwave field applied, there is no electron flow through the device for VSD = 0 as

seen in the top row of plots. When microwave fields are applied with the accompanying

source-drain fluctuations, the Coulomb blockaded dot rectifies the fluctuations as a function

of Vgate for VSD = 0 (bottom row). Figures 5.10(c) and (f) show simulations of the effect of

a temperature of 280 mK and of a 25 µV peak sinusoidal source. The latter is accomplished

via a convolution with a sinusoidal VSD drive.
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Both conductance (proportional to dc current) and differential conductance, where in-

dividual quantum energy eigenstates become resolved, are shown in Figure 5.11 at two

different frequencies. The two frequencies clearly have different effects. This is explored

further in the series of measurements shown in Figure 5.12 for frequencies ranging from 300

MHz to 25 GHz, where we see a clear evolution. A possible explanation for the observed

evolution is that both the gate voltages as well as the source-drain bias are fluctuating due

to the microwave excitation, and that the relative phase of these excitations is changing

with frequency. This is explored with a model, shown in the area of Figure 5.12 separated

by a dashed boundary, in which we are able to emulate the measurements by changing the

phase and amplitude of the gate voltage excitation while keeping the source-drain amplitude

constant. The model used to generate the simulations is described in Appendix E.

5.3 Discussion

Up to frequencies Eth/h̄ ' 100 GHz electrons within the quantum dot will screen electric

fields in the plane of the 2DEG. Such fields can penetrate only of the order of the Fermi

wavelength into the dot at the perimeter and therefore have only a 1/
√
M effect on the dot

potential, where M is the number of electrons in the dot. Experimentally, the correlation

scale of conductance fluctuations in gate voltage is several mV (see inset Figure 3.5), while

the dc source-drain voltage necessary to perturb the dot at low temperatures is much smaller

(of order ∆/e – a few µV for our device areas) [Linke97c, Switkes98]. Thus the near field

(capacitive) coupling to the quantum dot occurs primarily through the source and drain

reservoirs. As seen in Figure 5.7, only 10’s of µV of source-drain bias are required to cause

substantial heating in the device.

The effect of the magnetic component of the EM field on the dot transport is tiny: 1

mA through a wire produces a magnetic field of 0.2 µT at 1 mm radius. This is much larger

the current that is present in our antenna at the highest power levels (dBm). The motors

in the basement produce low frequency (60 Hz) magnetic fields that penetrate the cryostat.

However, the on-axis magnetic field 3 meters away from a 100-turn 5-cm radius solenoid

with 1 Amp current running through it is only 2 10−9 T.

Environmental electromagnetic fluctuations couple primarily into the devices studied

through the reservoirs. In open measurements this is manifest as decrease in the weak

localization amplitude along with any decrease in variance. To sum up, for a microwave field
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deliberately applied to the device, we find that over all powers and frequencies measured the

principal effect is simply to heat the device through modulation of the source-drain voltage.

The equivalent temperature achieved with increasing levels of radiation can be described

with a simple voltage bias model. Therefore, microwave coupling does not serve to explain

the dephasing temperature behavior.



Chapter 6

Discussion and Conclusions

6.1 Research Context and Philosophy

This research constitutes a “second generation” of quantum dot experiments, which capi-

talizes on early efforts to understand dot transport including the experiments described in

[Marcus92, Bird94a, Chan95, Clarke95]. The experiments in this thesis are intentionally

quantitative, and are conducted in a regime (e.g. single mode point contacts, chaotic trans-

port) where many of the transport characteristics of the devices should be well understood

and quantitatively predictable at a statistical level. The main quantity of interest, the phase

coherence time τϕ, is extracted from the measurements with a high degree of confidence

in the applicability the theoretical tools used [Beenakker97, Efetov97], many of which have

been only available recently.

To the extent possible, the experiments in this thesis were conducted with care. Al-

though it is impossible to build perfect devices, dots with significantly scarred trajectories

and quantum point contacts with resonances were rejected and not measured. Attention

was paid to measure devices of the appropriate size so that the results of interest (e.g.

distribution asymmetry, or dephasing rate) could be extracted with the least amount of

uncertainty, and also to cover a large area of measurement phase space (including dot

area, lead open-ness, and source-drain bias) in order to test our understanding of quantum

transport. Multiple devices were expected to and did in practice yield consistent results,

even when the devices were based on different 2D electron gas substrates. Finally, good

electronics practice, with attention paid to filtering, grounding, and noise was maintained

throughout the measurements.

81
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6.2 Summary of Accomplishments and Results

Full distributions of conductance through quantum dots with single-mode leads have been

measured for both broken and unbroken time-reversal symmetry using large ensembles

of shape-deformable chaotic GaAs quantum dots. Accurate control of lead conductance

and low temperature allow for the observation of non-gaussian conductance distributions.

This provides a stringent test of statistical theories of mesoscopic conductance fluctuations,

specifically allowing nontrivial predictions of random matrix theory to be observed.

Conductance distributions are observed to agree well with RMT calculations that ac-

count for a finite dephasing time, τϕ, once broadening due to finite temperature T is also

included. Some features however, in particular the ratio of variances Var gβ=1/Var gβ=2,

are inconsistent with the present model and remain unresolved. Full distributions of the

derivatives of conductance with respect to gate voltage P (dg/dVg) were also investigated,

though there is no theory for their evolution with temperature and dephasing at present.

In this thesis, shape-averaged magneto-conductance (weak localization) is also used for

the first time to obtain the electron phase coherence time τϕ(T ) in open ballistic GaAs

quantum dots. Values for τϕ in the range of temperature T from 45 mK to 4 K are found

to be independent of dot area, and above 100 mK the dephasing rate τ−1
ϕ is seen to follow

a A T + B T 2 temperature dependence. Surprisingly, this agrees quantitatively with the

predicted dephasing time for disordered two-dimensional electron systems with effective

mean free path on the order of the device size. This suggests that perhaps some Nyquist-

type dephasing mechanism is effective in open dots. Measurements of phase coherence times

using the weak-localization method for single mode leads were compared and found to be

consistent with measurements of τφ(T ) using three other techniques: τφ(T ) obtained from

weak localization amplitude at N = 2, τφ(T ) extracted from power spectra of UCF, and

τφ(T ) extracted from the width of the Lorentzian dip in average conductance around B = 0.

Below 100 mK, roll-off from the A T + B T 2 dependence is observed. This satura-

tion is not due to inadequate measurement of the electronic temperature, since the device

temperature is measured directly from CB peak linewidth and conductance variance.

One possible cause of saturation effects is background radiation in the device environ-

ment. To explore this possibility, microwave electromagnetic fields were deliberately coupled

to the devices. For several mesoscopic phenomena, including conductance fluctuations, their

statistical averages, as well as Coulomb blockade resonance widths, the radiation was shown
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to be equivalent to increased cryostat temperature over all powers and frequencies measured.

Non-linear Coulomb blockade measurements indicate that the microwave field causes fluc-

tuations of the source-drain voltage, and that the accompanying increase in dephasing is

due to Joule heating of transport electrons.

Therefore, microwave coupling does not serve to explain the saturation of the phase

coherence time τϕ at temperatures below 100 mK, twice the electronic base temperature.

The saturation of τϕ remains unexplained.

6.3 Future Directions

This thesis has investigated both the quantum structure and the dephasing properties of

open semiconductor quantum dots. These devices have given experimentalists access to

a surprisingly rich set of physics and are far from exhausted – future studies may include

work in mesoscopic charging [Cronenwett98] and the entanglement and interaction of nearby

electron systems [Buks98].

New technologies, such as nanotube growth and scanning probe techniques, will keep

advancing our ability to control condensed matter systems at smaller scales. The limit of

this work will be the ability to create systems with arbitrary selection of atomic constiuents,

provided the whole is energetically stable. Smaller size scales will increase quantum level

spacings and systems will become more immune to thermal coupling and exhibit long co-

herence times. The electronic systems studied in this thesis have a fairly short coherence

time of a few nanoseconds. Though long enough for interference experiments, more inter-

esting quantum measurement and manipulation experiments are challenging. Although we

observe the apparent saturation of dephasing, i.e. maximum phase coherence time in quan-

tum dots, this seems more likely to be an environmental issue than a fundamental issue: to

improve coherence, all interactions other than those of interest must be eliminated. Even

vacuum fluctuations (and spontaneous emission), the subject of much recent debate in the

mesoscopic community, can be surpressed through cavity engineering techniques practiced

in the atomic optics and bandgap engineering communities.

Besides electronic wavefunctions, other isolated quantum states in condensed matter

systems are electron spin and nuclear spin. The latter states can have very long coherence

times, and have led to implementable quantum computing using NMR in naturally occuring

molecules [Chuang98]. The ability to make quantum computing useful seems to hinge on
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the accessibility of artificial solid state quantum computation, with arbitrary control of huge

numbers of deliberately configured quantum states.

In sum, the study of coherence, quantum interaction and quantum measurement in

artificial systems is extremely compelling and important. Fortunately it is experimentally

accessible– this bodes well for an exciting future for the field.



Appendix A

Nanofabrication

A.1 Fabrication Introduction

Starting with a molecular beam epitaxy (MBE) grown wafer, the basic fabrication procedure

developed by myself and by my research group to fabricate quantum dot devices is the

following:

1. Cleave small (∼ 36µ m2) peice from wafer.

2. Lithographically pattern and etch mesas to provide inter-device isolation.

3. Pattern and deposit ohmic contacts using optical lithography followed by liftoff and

annealing.

4. Pattern gates defining device using multi-stage e-beam lithography.

5. Pattern and deposit bondpads using optical lithography followed by liftoff.

6. Glue chip into chip carrier and bond to devices of interest.

Since our basic process is already very familiar to mesoscopic device community, I won’t

give an exhaustive process flow here, and will instead describe sub-processes in detail. Sam-

ples were fabricated in a small cleanroom “the Microfab” at Ginzton Laboratory, Stanford

University.
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A.2 Photomask and e-Beam Designs

Figure A.1 shows the patterns that are used to define each step of the fabrication process

as outlined above. In our third generation design each device is built on a 800 µm x 500

µm mesa, so typically 30-50 devices can be made on a small chip. A photograph of a device

in the array is shown in Figure A.2.

Ohmic contact pads

Depletion gate padsMesa e-Beam gates

Figure A.1: Design for mesa, ohmic contact and gate patterns superimposed. The order of fabri-
cation is: (1) etch mesa (2) make ohmic contacts (3) make e-beam gates (4) make pads. Electron
micrograph of the above as realized on a GaAs/AlGaAs substrate. Mesa footprint is 800 µm x 500
µm.

A.3 Photolithography

The basic photolithography process is presented below. This process is optimized to be

robust and yield an outstanding lip for liftoff. The penalty is a minimum feature size of

about 3 µm, but this is not important since we do all of the fine metal patterning in the

e-beam lithography step (next section). If the develop time is increased past the baseline

1.25 minutes, one can get good patterns all the way to the edge of very small substrates (5-8

mm edge length), without any edge bead removal steps, and with only a slight additional

penalty in resolution.

There is a reason liftoff is not often used in industrial fabrication processes: it is not



A.3. PHOTOLITHOGRAPHY 87

Figure A.2: Electron micrograph of device in Figure A.1 as realized on a GaAs/AlGaAs substrate.
Mesa footprint is 800 µm x 500 µm.

as reliable as deposit-and-etch methods, since there can be poor adhesion of the metal to

the substrate and/or tearing. The advantages of liftoff are that no separate etch step is

required, and for certain desirable materials, specifically gold where no etch exists that will

not damage the GaAs, liftoff is the only method available.

Photolithography Process:

1. Clean chips well with 3-solvent clean: typically boroethane (environmentally safe

replacement for TCA and TCE), then acetone, and then methanol, for 5 minutes

each, with ultrasound if possible (not always desirable on final bondpad metal process

due to sensitive e-beam features).

2. Singe chip on hot plate, or in oven (120 C) for 5 minutes.

3. Spin Shipley 1813 standard photoresist at 7000 RPM for 30 seconds.

4. Bake at 90 C on hotplate for 20 minutes.

5. Soak in Chlorobenzene for 15 minutes (this step may be skipped if liftoff is not re-

quired, i.e. for the mesa lithography).

6. Bake at 90 C on hotplate for 5 minutes (may be skipped if liftoff lip is not required).

7. Expose on Karl Süss MB-3 mask aligner for 24 seconds (Power = 16.4) in soft contact

mode.
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8. Develop using Microposit concentrated developer diluted 1:1 with DI water, for 50

seconds, then in fresh developer for 25 seconds (1:15 total).

9. Oxygen plasma descum (at Ginzton, 50% power, 0.08 seconds).

10. HF dip 20:1 for 15 seconds, then place in N2 bag and transport to evaporators (at

Stanford these are in a separate building).

11. Metal evaporations using Edwards thermal evaporator:

(a) Gate metal:

• 200Å Cr (1 Å/s)

• 2500Å Au (1-2 Å/s for first 200 Å, then 5-6 Å/s)

(b) Ohmic contact metal

• 50Å Ni (1 Å/s)

• 1200Å AuGe eutectic (12% Ge by weight)

• 250Å Ni

• 1500Å Au

12. Liftoff in acetone; ultrasound should not be required.

A.4 Electron Beam Lithography

There are many variations possible on e-beam lift-off processing, and below is a baseline

process. In my final fab iteration (May 1997) I tried both single and double layer PMMA,

however with the PMMA weights I used (950K over 495K PMMA) the undercut is not sig-

nificant, and one effectively has a single layer process. Successful liftoff is achieved by virtue

of using a very thin metalization (145Å total) which is perfect adequate for depletion gates

(metal resistivity is ∼ 3Ω/square). Using a very low weight PMMA (200K or below) as a

lower layer would certainly be an improvement, although this was not tried. On the sug-

gestion of a visiting student from Delft, our group did try using PMMA/MMA co-polymer

as a lower layer, which resulted in a huge undercut, of up to 1µm as determined by “donut”

patterns, and although liftoff is good, problems including shorting between gates and de-

formation of the patterns were extremely painful and forced us to abandon the co-polymer
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process.

e-Beam Lithography Process:

1. Clean chips well with 3-solvent clean (same as for optical steps).

2. Singe on hot plate at 180 C for 2 minutes.

3. Single layer:

(a) Spin on 1200Å of 950K PMMA.

(b) Bake on hotplate for 30 minutes (+) at 180 C.

4. Double layer:

(a) Spin on 550Å of 495K PMMA.

(b) Bake on hotplate for 30 minutes at 180 C.

(c) Spin on 1100Å of 950K PMMA.

(d) Bake on hotplate for 30 minutes (+) at 180 C.

5. Expose at ∼ 240 µC/cm2 with e-beam.

6. Single layer: develop 50 sec in IPA:MIBK 3:1 with 1.3% MEK.

7. Double layer: develop 35 sec in IPA:MIBK 3:1 with 1.3% MEK.

8. Metal evaporation: 25Å Cr, followed by 120Å Au.

9. Liftoff in acetone.

NOTES:

1. The single layer option of the above process shows some proximity effect; this goes

away by shortening the develop time at the expense of some tearing.

2. Ultrasound (10 seconds while holding the chip with tweezers in the ultrasound bath)

may be used to clear clingy thin metal without damaging features.

3. An HF dip as is customary after optical lithography is not required to acheive good

adhesion and leads to a “black halo”, which can’t be good.
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1 µm

Figure A.3: Example of the e-beam lithography capabilities of the LEO/Nabity system.

A typical quantum dot fabricated with the above process and our converted SEM is

shown above in Figure A.3. Since the 2D electron gas is usually at least 100 nm below the

surface of the substrate, the lithographic linewidth of ∼ 50 nm that we can achieve was

adequate. Under the best possible conditions, using a short SEM focal length and perfect

exposure dose, we have fabricated 30 nm gold lines.

A LEO/Leica Stereoscan 440 in the Ginzton Microfab (purchased in 1993 for about

$200K) was used to write our e-beam patterns, in conjuction with the Nabity Pattern Gen-

erator Systems (or “NPGS”, ∼$30K, available from J.C. Nabity Lithography Systems). The

LEO is a great SEM for taking micrographs, but a rather poor lithography tool when com-

pared to the ∼$2M Hitachi machine next door at the NSF-funded Stanford Nanofabrication

Facility. The main problems with the LEO are poor beam current (exposure dose) control,

focus drift, and poor stage resolution (typically 5-10 µm). I have followed the following

procedure to accomodate these deficiencies:

1. The stage is moved sequentially to the writing location for each device as determined

by the optical patterns (mesa and ohmics) deposited in previous steps, and the focus

is set at the wafer surface. Since the chip is not perfectly flat, the surface plane is

calculated from three reference points near the chip corners.

2. At each stage position, the fine patterns for the devices are exposed at high magnifi-

cation (4400X) and low beam current (typically 60 pA), starting with the outer-most

patterns and working in, so that when the actual gates that form the dot are being

written, the stage has completely stopped drifting.

3. Finally, a second pass through all of the device positions is made, and large patterns
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that connect the fine device lines to the optical bondpads are written at low mag-

nification (400X) and high beam current (10 nA). The high beam current reduced

exposure time at the expense of resolution.

Low mag patterns

High mag patterns

Exposure squares

Figure A.4: e-beam patterns. The inner (high magnification) and outer (low magnification) patterns
are written in the first and second stage passes respectively.

Figure A.5: Electron micrograph of the device showing alignment of optical and e-beam patterns.
The mesa width is 150 µm.

Figure A.4 shows all of the e-beam patterns written for the typical device; it is an

enlargement of the center portion of Figure A.1. Note the set of exposure squares: these

were four squares with increasing exposure used to confirm e-beam exposure level. For a

normal exposure, two of the squares “clear out” and two remain filled with PMMA. If the

beam exposure was significantly too high or low, as indicated by the squares, the PMMA

can be rinsed off and lithography repeated before the irreversible metal depostion step.
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I wrote special-purpose software to calculate the stage and focus positions, and send

the appropriate commands to the SEM via an RS-232 link and issue commands to the

NPGS. The Nabity software controls the exposure of each device using two 16-bit D-to-A

converters connected to the SEM’s deflection plates, and also controls the beak blanker.

The Nabity system is quite good, and we have very few complaints about it. It would be

convenient if the software ran under a more modern operating system than MS-DOS to

facilitate networking, and also if it handled GDS Stream input files without conversion.

This would allow us to use L-Edit (Tanner Research) to generate all of our lithography

patterns, which is superior to the Design CAD program supported by Nabity.

A.5 Ohmic Contacts

The metalization for our ohmic contacts conform to a standard Au-Ni-Ge process with the

exact layers given above in section A.2. An Accupulse 410 Rapid Thermal Annealer (RTA)

at the Ginzton Microfab is used to anneal the ohmic contacts. The typical temperature and

duration of the thermal cycle for good ohmic contacts was 410C for 40 seconds. Typical

contact resistances were less than 5kΩ at room temperature, and less than 1kΩ at liquid

Helium temperatures.

A.6 Mesa Etching

We use a simple room temperature phosphoric acid wet etch to etch the mesas. Typically

about 45 seconds is required to etch down to a 2DEG hetero-interface 100 nm underneath

the surface. The exact etch we use is 1 : 8 : 240 ratio mixture of H2SO4 : H2O2 : H2O in an

ice bath (0C). It is an extremely good idea to use a test peice of GaAs to calibrate the etch

exactly each time.

A.7 Packaging and Wire Bonding

We glue the chips into 28-pin ceramic chip carriers, which are non-magnetic (Jade Corp.,

part 28M270J060U064). Initially, we used silver paint as the “glue” because it is probably a

good thermal and electrical conductor to the gold backplane of the chip carrier. This really

isn’t necessary, however, and recently we have begun to use PMMA since it is much easier

to remove (with acetone).
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Our wire bonder is a West-Bond Model 5416 ultrasonic wedge bonder. We use 25 µm

gold wire (99.99% Au) and a chuck temperature of 140 C.

Figure A.6: SEM image of bonded device.
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Figure A.7: SEM image of two chips side by side in the ceramic chip carrier cavity with devices
wire-bonded. The width of the cavity is 6.85 mm. The circular bounding aperture is the final
objective of the SEM.
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2D Electron Gases and Devices

B.1 Two-dimensional electron gases

The preferred substrate for most ballistic mesoscopic experiments is a two dimension elec-

tron gas (2DEG) formed in a potential well created at a GaAs/AlxGa1−xAs heterointerface.

For a range of doping values (typically 1-10 11) only the first sub-band (in the z direction) is

occupied, and one has a true 2D system. Since GaAs and AlAs have the same crystal struc-

ture with almost the exact same lattice constact (GaAs = 5.65Å and AlAs = 5.66Å), an

interface with almost no defects may be created when the crystal layers are grown sequen-

tially using molecular beam epitaxy (MBE). In an MBE a flux of the atomic constituents is

directed in an ultra-high vacuum (' 10−12 torr) at a heated polished substrate. Transport

mean free paths of carriers in the 2DEGs exceeding 100 microns have been reported by

several groups if the (disordered) dopants are placed away from the interface. For Al com-

position fraction x less than 0.4, the conduction band minima is in the Γ valley, and there

are no conduction subbands. Also, in this regime the band offset is roughly proportional

to the mixture ratio x. The effective mass of carriers in the 2DEG’s conduction band is

m∗ = 0.067 me.

We have fabricated our devices on various substrates from several sources. Of the 16 or

so 2DEGs we have tried, only 3 to 4 have worked well for quantum dot devices; two of these

were used to make the quantum dots studied in this dissertation. A fundamental problem

is switching noise, which can result in a jump in the position of a coulomb blockade peak,

or a switch in a coherent conductance level in an open device.

The switching effect is presumably due to thermally activated switching centers. Other
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Figure B.1: An example of the effect of a “switcher” on the conductance through a quantum dot
which has been biased to support approximately one mode in each quantum point contact.

secondary failure mechanisms include poor ohmic contacts, and low mobility (and thus bad

quantum point contacts) resulting from crystal defects, and non-uniform 2DEG density.

GaAs/AlGaAs substrates containing 2DEGs grown by many different groups share simi-

lar design characteristics. A superlattice smoothes substrates defects, and traps impurities.

This is followed by a GaAs buffer later, followed by the GaAs/AlxGa1−xAs layer. The

2DEG is formed between these two layers. After this more GaAs/AlxGa1−xAs containing

silicon (n-type) dopants is deposited, followed by a cap layer of GaAs is used as a passivation

layer (AlGaAs will oxidize in air). A diagram of the entire structure is shown in Figure B.2.

One usually wishes to to make the 2DEG as close to the surface as possible so that it

may be more finely controlled with surface depletion gates, however to keep the mobility

high the 2DEG must be substantially separated from the doping layer. A detailed review

of these types of considerations may be found in [Melloch93].

B.1.1 Wafer CEM2385

This substrate was grown by Cem Duruöz, a member of the Harris group at Stanford

University. The growth profile for the wafer is shown below. The doping is uniform in the

upper AlGaAs layer (rather than delta-doped, where all of the dopants are placed in one

layer). The carrier density measured with a Hall bar was 2.0× 1011 cm−2. I measured the

cyclotron radius with the QPCs very open (5-6 channels) and estimate the density to be

2.8 × 1011 cm−2 in device C1. It is interesting to note that Yacoby et al. also reported a

Fermi energy (proportional to density) using focusing measurements that was higher than

that found using Shubnikov-de Haas measurements. The mobility was measured to be

140,000 cm2 Vs.
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Figure B.2: Substrate band diagram showing layers and position of 2DEG.

100Å GaAs

400Å AlxGa1−xAs x = 0.34 n(Si)= 1.0× 1018cm−3

400Å AlxGa1−xAs x = 0.34

10000Å GaAs

500Å AlxGa1−xAs x = 0.34

13000Å Superlattice: 100A AlxGa1−xAs & 30A GaAs,

x = 0.34, 100 periods

3000Å GaAs

substrate is semi-insulating GaAs

B.1.2 Wafer 940708A

This substrate was grown by Ken Campman, with Art Gossard’s group at UCSB. This

2DEG was grown at 640 C.

This 2DEG is located 160 nm below the surface of a GaAs/Al0.3Ga0.7As heterostructure

with sheet density n = 1.8× 1011 cm−2, mobility µ = 1.0× 106 cm2 Vs, Fermi wavelength

λF = 60 nm and Fermi energy EF = 6.4 meV.
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100Å GaAs

1000Å AlxGa1−xAs x = 0.30

delta dopant layer, Si: 2.5× 1012cm−2

500Å AlxGa1−xAs x = 0.30

8000Å GaAs

3000Å Superlattice: AlxGa1−xAs / GaAs, x = 0.30

3000Å GaAs

substrate is semi-insulating GaAs

B.2 Device Inventory

The following devices “passed the test” and produced published data during this research:

B.2.1 Dots I613, I75

1 µm

Area = 0.4 µm2

2DEG = 940708A

Experiment = He-3 Dephasing (both dots)
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B.2.2 Dot I77

1 µm

Area = 1.9 µm2

2DEG = 940708A

Experiment = He-3 Dephasing

B.2.3 Dot I74

1 µm

Area = 4.0 µm2

2DEG = 940708A

Experiment = He-3 Dephasing

B.2.4 Dot C14

For picture, see Figure 2.2 (right device).

Area = 0.5 µm2

2DEG = CEM2385

Experiment = Dilution fridge distributions



100 APPENDIX B. 2D ELECTRON GASES AND DEVICES

B.2.5 Dot C79, C63

1 µm

Area = 1.0 µm2

2DEG = CEM2385

Experiment = Dilution fridge distributions (C79), CB Radiation (C63)

B.2.6 Dot C22

1 µm

Area = 1.6 µm2

2DEG = CEM2385

Experiment = Dilution fridge dephasing

B.2.7 Dots C32, C70

1 µm

Area = 3.0 µm2

2DEG = CEM2385

Experiment = Dilution fridge dephasing (both dots), N=1 Radiation (C70)
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B.2.8 Dots C88, C15

1 µm

Area = 8.0 µm2

2DEG = CEM2385

Experiment = Dilution fridge dephasing
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Cold Filter

C.1 Motivation

There is much research activity focused on measuring the electronic properties of artificial

devices at low temperatures. Typically a dilution refrigerator, capable of reaching temper-

atures down to ∼10 mK, is employed to cool the devices and associated wiring. Unfortu-

nately, the effective temperature of the electrons traveling through the device never reaches

the temperature of the coldest portion of the dilution refrigerator (the mixing chamber base

plate). This can be due to the coupling of environmental radiation into the device under

test and also imperfect thermal sinking of the wiring.

We have constructed a cryogenic filter which aims to eliminate these sources of heating

by running all electrical wiring going to the sample through a cold low-pass filter. The filter

and accompanying shielding provide good thermal sinking as well as protection from the

external electromagnetic environment (environmental radiation).

On a Kelvinox dilution refrigerator with a base temperature of 25 mK, the filter is

capable of reducing the electron temperature from 95 mK (no shielding) to approximately

42 mK, as measured in our GaAs/AlGaAs devices.

C.2 Technical Description

The filter unit is attached to the base plate of the refrigerator. The sample wiring (we use

standard 40-gauge copper magnet wire) is first wrapped around a solid copper spindle to

provide an initial thermal anchor, and then enters the filter through a pair of connectors
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with gold-plated pins (see Figure C.1). The wiring in the enclosed filter cavity is extremely

thin: we use 20 micron thick wire with 5 micron thick insulation (California Fine Wire

Co., Stableohm 800A). Approximately 13 feet of this wire is wrapped non-inductively in

the cavity, which is then back-filled with conductive epoxy containing silver powder (Epoxy

Technology, #410E). Somewhat amazingly, there are very few shorts to the epoxy with wire

from this vendor. We did however have many wires break for unknown reasons, and it is

good to have spares. It is also a good idea to have very deliberate plans for handling the fine

wire when assembling the filter unit. Steve Grossman (who worked many late nights on the

filter during summer 1997) and I ended up soldering and then silver-painting (tin-lead solder

superconducts at low temperatures) the fine wire to the connectors and then wrapping the

thin wire, silver-painted together into a single cable, around a copper spool that we placed

in the filter cavity prior to epoxy backfill. The filter has been thermally cycled about 30

times with few new breaks or shorts; apparently there are no severe thermal expansion

mismatch issues!

The filter housing is machined from a solid block of copper, which is connected to the

mixing chamber base plate with a copper L-bracket. Clean copper surfaces screwed together

tightly insure a good thermal connection. RF leaks due to connector air gaps are filled with

indium gaskets.

The thin wires strung through the epoxy make an excellent distributed low pass RC

filter, with a roll-off at ∼500 kHz. Below the filter, all wiring and the device under test is

fully encapsulated by gold-plated copper or bronze shielding.

C.3 Advantages over other methods

Presently most research groups involved in cryogenic electronics research have employed

“copper powder” filters. These filters, in which the leads traverse through a cell filled

with epoxy containing surface-oxidized copper particles, absorb high frequency radiation by

virtue of the large effective surface area of the copper particles and the short skin depth.

These filters are described by [Martinis87]. However, even with multiple stages, the lowest

claimed electronic temperatures are about∼60 mK on the typical dilution refrigerator setup.

The only additional filtering in our system is a simple RC filter (with a typical low-pass

roll-off of 10 Hz) following the D-to-A converters for the gates and also “π” filters (Spectrum

Controls Inc., part #SCI-56-705-001, with a ∼ 50 MHz roll-off), placed inline with respect
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to the sample wiring as it enters the cryostat. The π filters are standard parts used to

eliminate unwanted RF noise from communications circuits.

The filter system described about is presently being implemented by other research labs.

Mixing chamber

Base plate

Spindle

Device wiring

Epoxy

Connector pair

Cold finger

Shielding

Device

Figure C.1: Filter unit and cold finger of dilution refrigerator.
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Measurement System

D.1 Cryostats

Sorption-pumped 3He and dilution refrigerator cryostats were used to perform the measure-

ments in this thesis. Both of these systems are located in the Varian Building Room 153

(Physics Department, Stanford University). A detailed description of these systems which

are both fairly new (purchased in 1993 and 1994) can be found in the Oxford Instruments

documentation.

The “high temperature” measurements of Chapter 3 were performed using an Oxford

Instruments Heliox 2VL 3He sorption-pumped insert, which has a base temperature of ap-

proximately 300 mK. No special electrical filtering, expect for inline “π” filters (Spectrum

Controls Inc., part #SCI-56-705-001, ∼ 50 MHz roll-off) was used in the experiment wiring.

The single-sorption-pump design often made it difficult to do temperature sweeps due to

the poor feedback control and the limited lifetime of the 3He pot, but it was adequate.

On our Heliox system, the temperature controller was initially measuring the system RuO2

resistor with too high of a probe current, heating it. This is a lesson that one should fully

understand the equipment one is using even if it bought packaged from a vendor.

The dilution refrigerator used for low temperature measurements in this thesis was an

Oxford Instuments Kelvinox with a base temperature of ∼ 28 mK measured using an RuO2

resistor, and an electronic base temperature of ∼ 45 mK. The special filtering effort that

went into the wiring on this cryostat are described in Appendix C. The dilution refrigerator

was operated in a shielded room although opening and closing the door to the shielded

room was never observed to have any effect.
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1GΩ

∆ V

Lock-in
Vrms = 0.1 V

Irms = 0.1 nA

quantum
dot

GND

Idrive V+

V-
gate
line

A-to-D COM
A-to-D Out

Bat Box High
Bat Box Low

Figure D.1: Connection diagram for four-wire current bias mode of operation.

D.2 Measurement Configurations

The most common configuration for the measurements performed in this thesis was the

four-wire constant-current bias configuration shown in Figure D.1. Given that a known

constant current is passing through the quantum dot, the voltage across the device pre-

cisely determines the resistance and conductance. Typically the resistance of the device is

near or below ∼ 25 KΩ (average conductance e2/h and above. A potential problem with

this configuration is that if the resistance becomes very high (due to for example destructive

quantum interference), the voltage across the device rises potentially heating the device and

changing the conductance. This is the case for distribution measurements, where a different

type of 4-wire measurement was used, shown in Figure D.5. However, in most measure-

ments, there is enough thermal smearing and/or dephasing that the resistance remains near

the average. As long as the source-drain drive voltage is within ∼ 2 kT, heating is minimal

(see Section 3.3).

As indicated in Figure D.1, each gate is driven in by a battery-powered bias box and an
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3V (2 x D-size alkaline cells)

100k Ω

9 0 k Ω1 0 k Ω

Low High

SPDT (Low, none
or High to Bus)

DPDT
(0.3V, off

or 3V range)

Bus

Bourns 10-turn Pot

10:1 Voltage Divider

Figure D.2: Battery box circuit (drawing by Ian Chan).

A-to-D converter channel in series. The battery-operated voltage source is a simple circuit

based on a potentiometer, as shown in Figure D.2.

Typically, an A-to-D converter (a National Instruments 10-bit 6-channel AO6 board

was used) is also placed in line to allow computer control. In these experiments connecting

the computer A-to-D lines to the experiment was never observed to change noise or ground

properties of the system. The A-to-D lines are filtered with a low pass RC filter. A

differential amplifier between the computer and the experiment (shown in Figure D.3) was

installed to reduce grounding problems. The electronics described in this section was used

in both cryostats.

D.3 General Observations

Several approaches that constitute good measurement practice were followed in these ex-

periments and are enumerated here.

1. A spectrum analyzer was connected to the output of all pre-amps to check for noise

source (60 Hz and harmonics are the usual suspects) and to make sure that there is a

low noise floor at the measurement frequency.
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Battery Ground
(connected to AC ground

via DAC board)

Chassis Ground
(Connected to AC ground

via shielded room)
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Input +
(DAC  high)
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(DAC low)

Differential Amplifier RC filter

+12V

Figure D.3: Differential amplifier circuit (drawing by Ian Chan).

2. All computer connections were disconnected to determine their effect on noise and on

measurement.

3. The grounding configuration and the possibility of ground loops was considered. For

example, the shield of the output of the lock-in amplifiers used (PAR 124A’s) is

actually not at ground but is oscillating at a few µV.

4. Inline resistors of at least 350Ω seemed to prevent electrostatic destruction of the

devices due to influx of charge onto gates.

D.4 High-resistance Measurements

For high-resistance Coulomb blockade measurements, the standard measurement configu-

ration is shown in Figure D.4. The lock-in now provides a constant voltage source and the

current is measured to determine conductance. The current pre-amplifier used is an Ithaco

Model 1211. The voltage is always below a known maximum level which prevents heating.

In order to measure the conductance accurately for the configuration of Figure D.4, a

set of voltage probes is added to the configuration, so that there is an independent measure

of both current and voltage, as seen in Figure D.5. This capability enabled measurement
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Figure D.4: Connection diagram for voltage bias mode of operation.

of conductance distributions for N = 1 quantum dots.

D.4.1 Combined AC/DC Measurements

For the nonlinear Coulomb blockade measurements, it was necessary to measure the small

signal ac response of the device on top of a changing dc bias. In this case, the dc source

was an AO6 channel with a voltage divider, and the ac signal of the lock-in is coupled

on top of the dc using a passive network (a resistor and two capacitors) with appropriate

values. Active electronics could also be used but could result in along noise and grounding

problems.

D.5 Software

Igor Pro from Wavemetrics, Inc. (http://www.wavemetrics.com) was the software core of

the measurement system. Igor is a fantastic program for scientific data analysis, graphing

and also data acquisition. Historically it has run only on the Mac but recently you one also

get a very nice version for MS Windows machines.

Using low-level software modules written by myself and other students that interface

to a GPIB card and dual 6-channel 10-bit programmable-range D-to-A cards (National

Instruments AO6), Igor is able to do all data acquisition functions for an experiment.

The user interface is command-line driven, but the interpreted programming environment
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Figure D.5: Connection diagram for voltage bias, V and I measuring mode.

is easy to use. The ability to quickly make and manipulate very sophisticated graphs

immediately after data-acquisition makes Igor very useful. The graphical output, including

3D visualization, is up to scientific publication requirements. My only criticism of the Igor

system is its restriction that all working data is loaded in memory, as opposed to stored on

disk in a database. Perhaps this will be improved in a future version.



Appendix E

Non-linear Coulomb Blockade

Model

E.1 Description

In order to better understand the effect of source-drain fluctuations on the non-linear re-

sponse of a quantum dot in Coulomb blockade, a short simulation was coded in Igor. The

basic idea is that the ideal thermal non-linear CB diamonds are smeared (convolved) with

an aribitrary trajectory in Vgate – VSD space. The trajectory may simply be a sinusoidally

changing VSD, representing pure source-drain fluctuations, or a combined effect, where Vgate

is also flutuating at the same or even a harmonic frequency, with a possible phase lag.

In designing the model I have attempted to follow good numerical recipe practice and

have slightly over-quantized. Non-linear responses which are shifted in Vgate – VSD space

are linearly interpolated from (0,0). The approach is a reasonable compromise between

taking too long and getting the wrong answer, but one has to be attentive to the level of

discretization.

Figure E.1 shows an effort to match at experimentally measure Coulomb blockade dia-

mond with a simlation in which the source-drain and gate voltages are driven at harmonic

frequencies (black dots show drive ”trajectory”).
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Figure E.1: Measured non-linear Coulomb blockade diamonds and example simulation.

E.2 Source Code

A version of the source code is reproduced below. Feel free to contact the author by e-mail

(andy@alumni.princeton.edu) with any questions.

// function for zero temp CB diamonds
function cbzero(vg,vsd)

variable vg,vsd
variable i,j,k,x,y,vl,vr

variable al = -300
variable ar = 120
variable delta = 40

variable mod = -1
if (vsd<0)

vsd *= -1
vg *= -1
mod = 1

endif
vl = vsd-al*vg
vr = vsd-ar*vg
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if ((vl>0) %& (vr>0))
return mod*(floor(vl/(delta*(-al)/ar))

+floor(vr/delta)+2)
endif
return 0

end

// convolves cbgrid into cbsmear to simulate radiation drive
macro cbadd(magvsd,magvg)

variable magvsd,magvg
silent 1;pauseupdate
make/o /n=60 wavesd,waveg
variable n = numpnts(wavesd)

waveg = magvg*sin(6*pi*p/n) //+0.3*magvg*cos(2*pi*p/n)
wavesd =magvsd*sin(6*pi*p/n)

duplicate /o cbgrid cbsmear
variable i = 0
do

cbsmear += cbgrid(wavesd[i]+x)(waveg[i]+y)
i+=1

while (i<n)
cbsmear *= 1/n

end

// generates finite temp CB diamonds in array cbgrid
function cbgen(temp)

variable temp
variable vg,vsd
variable i,j,k,x,y,vl,vr

variable al = -160
variable ar = 80
variable delta = 7.046 / 1.6
variable mod = -1

WAVE cbgrid=cbgrid
WAVE twave=twave
cbgrid = 0
redimension /n=(dimsize(cbgrid,1)) twave
make /o/n=(dimsize(cbgrid,1)) cbrow
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print dimsize(cbgrid,0),dimsize(cbgrid,1)

SetScale/I x -10,10,"", twave
// thermal weighting function
twave = 1 / ( Cosh( (p-150)/3/temp )^2 )
rotate 150,twave
wavestats /q twave
twave /= numpnts(twave)*V_avg*2

j = 0
do

vsd = dimoffset(cbgrid,0)+j* dimdelta(cbgrid,0)
i=0; cbrow = 0
do

vg = dimoffset(cbgrid,1)+i* dimdelta(cbgrid,1)
//-vgoffset

mod = 1
if (vsd<0)

mod = -1
endif
vl = mod*(vsd-al*vg)
vr = mod*(vsd-ar*vg)
if ((vl>0) %& (vr>0))

cbrow[i] =-mod*(floor(vl/(delta*(-al)/ar))
+floor(vr/delta)+2)

endif
i+=1

while (i<dimsize(cbgrid,1))
convolve /c twave,cbrow
cbgrid[j][]=cbrow[q]
j+=1

while (j<dimsize(cbgrid,0))
end
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